REAL ANALYSIS QUALIFYING EXAMINATION, JUNE 15, 2011

10-12:30, RH 114

Last name:	First name:	
UCI ID:	Signature:	

Instructions:

- (1) Solve as many problems as you can.
- (2) Use only one side of each sheet. Do at most one problem on problem on each page.
- (3) Write your name, and the number of the problem you are working on, on every page.
- (4) Justify your answers. Where appropriate, state without proof the results you are using.
- (5) Throughout the test, standard notation is used. For instance, μ_L stands for the usual Lebesgue measure on \mathbb{R} .

Good luck!

Problem	Max. grade	Your grade
1	10 pts.	
2	10 pts.	
3	10 pts.	
4	10 pts.	
5	10 pts.	
6	10 pts.	
Total:	60 pts.	

Throughout the test, standard notation is used. For instance, μ_L stands for the usual Lebesgue measure on \mathbb{R} .

Problem 1. Suppose f and g are real-valued μ_L -measurable functions on \mathbb{R} , such that (1) f is μ_L -integrable, and (2) g belongs to $C_0(\mathbb{R})$. For c>0 define $g_c(t)=g(ct)$. Prove that (a) $\lim_{c\to\infty} \int_{\mathbb{R}} fg_c d\mu_L = 0$, and (b) $\lim_{c\to0} \int_{\mathbb{R}} fg_c d\mu_L = g(0) \int_{\mathbb{R}} f d\mu_L$.

Problem 2. Suppose μ and ν are σ -finite measures on a measurable space (X, \mathcal{A}) , such that $\nu \leq \mu$, and $\nu \ll \mu - \nu$. Prove that

$$\mu\Big(\Big\{x\in X: \frac{d\nu}{d\mu}=1\Big\}\Big)=0.$$

Problem 3. Prove that the Gamma function

$$\Gamma(x) = \int_{(0,\infty)} t^{x-1} e^{-t} \mu_L(dt)$$

is well defined and continuous for x > 0.

Problem 4. Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be the measure spaces given by:

- X = Y = [0, 1].
- $\mathcal{A} = \mathcal{B} = \mathcal{B}_{[0,1]}$, the Borel σ -algebra of [0,1].
- $\mu = \mu_L$, and ν is the counting measure.

Consider the product measurable space $(X \times Y, \sigma(A \times B))$, and its subset $E = \{(x, y) \in A \setminus B \in B \}$ $X \times Y$; x = y $\subset X \times Y$.

- (1) Show that $E \in \sigma(\mathcal{A} \times \mathcal{B})$.
- (2) Show that $\int_X \left\{ \int_Y \mathbf{1}_E d\nu \right\} d\mu \neq \int_Y \left\{ \int_X \mathbf{1}_E d\mu \right\} d\nu$. (3) Explain why Tonelli's Theorem is not applicable.

Problem 5. Suppose $f \in C^1[0,1]$ (that is, f is continuous, and continuously differentiable, on [0,1], f(0) = f(1), and f > f' everywhere.

- (1) Prove that f > 0 everywhere.
- (2) Prove that

$$\int_{(0,1)} \frac{f^2}{f - f'} d\mu_L \ge \int_{(0,1)} f d\mu_L.$$

Hint. Apply Cauchy-Schwarz (or Hölder) Inequality to the product of h and g, where $h = \sqrt{f - f'}$, and g = f/h.

Problem 6. Suppose $(f_n)_{n=1}^{\infty}$ is a sequence of measurable functions on [0,1]. For $x \in [0,1]$ define $h(x) = \#\{n : f_n(x) = 0\}$ (the number of indices n for which $f_n(x) = 0$). Assuming that $h < \infty$ everywhere, prove that the function h is measurable.