Qualifying Exam in Algebra

May 6,1996

Do six of the following ten problems. In this exam, **Z** denotes the integers, **Q** the rationals, and **C** the complex numbers.

- 1. Let G be a group of order 60 containing a normal subgroup of order 5. Show that G contains an element of order 15.
- 2. Let G be a group and $H \neq G$ be a subgroup which contains every subgroup $K \neq G$ of G. What can you say about G?
- 3. Let G be a finite simple group and p a prime number. Suppose that G has exactly p+1 Sylow p-subgroups. Show that p^2 does not divide the order of G.
 - 4. Which of the following 4 matrices are similar over **Z**:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}?$$

Which of them are similar over $\mathbb{Z}/2\mathbb{Z}$?

- 5. Let A be a subring of the complex numbers consisting of all numbers a+bi with integer a,b. Compute the order of the multiplicative group of the ring A/13A.
- 6. Let A be the ring of all 2×2 real matrices. Prove that the center of A consists of all matrices $(xy yx)^2$ with x, y in A.
- 7. Let R be an associative ring with 1, M a right R-module, $F: M \to R$ a homomorphism of R-modules with f(M) = R. Prove that there is a decomposition $M = K \bigoplus L$ with f(K) = 0 and $f|_{L}: L \to R$ is an isomorphism.
 - 8. Find the Galois group of the polynomial $3x^3 9x^2 + 9x 5$ over **Q**.
- 9. Let E be a splitting field of $x^8 1$ over a field F of 4 elements. Find card(E).
- 10. Let F be a field, and $f(x) \in F[x]$ a nonzero monic polynomial. Suppose that the zeros of f(x) in a splitting field E of f(x) over F are all distinct and that the set of zeros is closed under multiplication. Prove that either $f(x) = x^n 1$ or $f(x) = x^n x$ for some natural number n.