Algebra Qualifying Exam

August 1997

Do six of the following ten problems.

In this exam \mathbb{Z} denotes the ring of integers of the field \mathbb{Q} of rational numbers, \mathbb{R} denotes the field of real numbers, and \mathbb{F}_n a finite field.

- 1. Let G be a finite group with the property that for any two subgroups H and K, either $H \subseteq K$ or $K \subseteq H$. Prove that G is a cyclic group of order $|G| = p^n$, p prime.
 - 2. Prove that no group G of order $5^n.6$, $n \ge 2$, is simple.
- 3. Let H be the subgroup of the general linear group GL(2, F), of 2×2 invertible matrices over a field F, that stabilizes the set $\binom{x}{0} \mid x \in F$ under left multiplication. Prove that H is a solvable group.
 - 4. Find the greatest common divisor d(X) of the polynomials

$$f(X) = X^4 - X^2 + 2X - 1$$
 and $g(X) = X^4 + 2X^3 + X^2 - 1$

over the field of real numbers \mathbb{R} . Find polynomials u(X) and v(X) such that

$$d(X) = u(X)f(X) + v(X)g(X).$$

- 5. Determine the structure (as a direct product of cyclic groups) of the group of units in the ring $\mathbb{F}_5[u]$ where $u^3 = 1$ (\mathbb{F}_5 denotes the finite field with 5 elements).
- 6. Let D be the ring of Gaussian integers $\mathbb{Z}[i]$, and $M = D^3$ the free D-module of rank 3. Take K to be the submodule generated by (1,2,1), (0,0,5) and (1,-i,6). Prove that M/K is finite, and determine its order.
- 7. Let E be the splitting field of $X^{35} 1$ over the finite field \mathbb{F}_8 with 8 elements. Determine the cardinality |E| of E. How many subfields does E have?
- 8. Determine the degree $[E:\mathbb{Q}]$ of the splitting field E of $X^{10}-5$ over the rational field \mathbb{Q} .
- 9. Let F be a field and let $f(X) \in F[X]$ be a separable irreducible polynomial of degree 4. Determine, as explicitly as possible, the Galois group G, of the splitting field of f(X) over F, when G has order 8.
 - 10. Show that the splitting field E of the polynomial

$$f(X) = X^3 + X^2 - 2X - 1$$

over the rational field \mathbb{Q} is obtained by adjoining a single root of f(X). Find the Galois group Gal (E/\mathbb{Q}) .

HINT: Show first that f(X) divides $f(X^2 - 2)$.