Math 105A Final Exam Practice Exercises Aaron Chen

Summer 2017
** Don't forget about Midterm material, too! (Refer to our old materials).
Reminder: Make sure you are comfortable with the Homework and Quiz Problems first!! You must know Definitions, Theorems, and general algorithms, too.

1. Aside from HW 6: 7.1.12. (Check the three parts of the definition to be a norm.)
2. We mentioned it in discussion: 7.1.15, the strengthened version of Cauchy Schwarz.
3. 7.1.11. (A bit difficult)

If T is a (symmetric) Positive Definite matrix, show that $\|\vec{x}\|_{T}=\sqrt{\vec{x} \cdot T \vec{x}}$ is a norm on \mathbb{R}^{n}.
Hints: Use that a symmetric positive definite matrix has n real eigenvalues and an orthonormal basis of corresponding eigenvectors for everything.
For the Triangle Inequality: Square both sides. Apply Cauchy-Schwarz on terms that don't cancel.
4. 7.2.1,5,9. They're all related. It's more important to do the same parts (e.g. parts (a,b,d)). At least the 2 by 2 matrices because the computations are easier.
5. 7.2.15b with 7.2.16. Show that $\rho(A)=\|A\|_{2}$ when A is Symmetric. Fact: A (real valued) symmetric matrix has only real eigenvalues.
(I also recommend the other parts of 7.2.15, too).
6. Aside from HW 7: Similar to 7.3.14, show that $\left\|T_{g}\right\|_{\infty}<1$ with the Gauss Seidel iterative. (Did in Discussion, so review it.)
7. Aside from HW 8: 7.4.7b - Find the optimal choice of ω for 7.4.1b.
8. Aside from HW 8: 9.2.13 is fundamental. 9.2.16, and 18 are interesting.
9. From HW 9 on Power Method: 9.3.18a,b,d.
10. Aside from HW 9:

On shifting the QR algorithm. We discussed the Wilkinson Shift - the idea is to use a shift based on the eigenvalue of the bottom-right 2 by 2 matrix that is closest to the (n, n) entry.
(i) For a general 2×2 matrix $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, find its eigenvalues.
(ii) Write a Matlab code that computes these eigenvalues and picks out the one closest to d. Write this code by hand, and without using eig(M). You can use det(M) and trace (M) if you wish.

