Math 105A Summer 2017 Sample Questions (for Midterm) Aaron Chen

Problem 1

Let $g(x) = 2 - e^{-x}$. Show that fixed point iteration, $p_{n+1} = g(p_n)$ converges for any $p_0 \in [1,3]$.

Problem 2

Find a fixed point iteration $p_{n+1} = g(p_n)$ converging quadratically for the equation $x = \cos(x)$ for sufficiently close starting points p_0 . Include a justification for the quadratic convergence.

Problem 3

Suppose the sequence $\{p_n\}_{n=1}^{\infty}$ converges quadratically to p = 0. Let $r_n = p_{2n}$. What is the order of convergence of $\{r_n\}_{n=1}^{\infty}$?

Problem 4 (Example 2.5.8)

(a) Turn the root finding problem of solving $x - 2^{-x} = 0$ in [0, 1], into a fixed point problem.

(b) Using (a) and $p_1 = 1$, find p_1, \dots, p_5 . Then find $\hat{p}_1, \hat{p}_2, \hat{p}_3$ by applying Aitken's Δ^2 method.

(c) How could we get a quadratic rate of convergence if we start p_1 sufficiently close?

Problem 5

Consider the following Matlab code to multiply two lower triangular matrices L_1, L_2 that are $n \times n$,

```
L = zeros(n,n);
for i = 1:n
    for j = 1:i
        for k = j:i
            L(i,j) = L(i,j) + L1(i,k)*L2(k,j);
        end
    end
```

end

Find the total operation count of the algorithm (that is, the number of additions and multiplications for this code). Finding the leading order term with correct coefficient is sufficient.

Problem 6

(a) Perform Gaussian Elimination with Partial Pivoting on the matrix $\begin{bmatrix} 1 & 2 & -1 \\ 2 & 4 & 6 \\ -1 & 2 & 5 \end{bmatrix}$. (b) Use the calculations in (a) to find the matrices P, L, U in the factorization PA = LU.

Problem 7

Find all values of α, β , if any, such that this matrix is diagonally dominant: $\begin{bmatrix} 3 & \beta & 1 \\ 2\alpha & 3 & -1 \\ 1 & -1 & 2 \end{bmatrix}$. (Optional): What α, β would make it positive definite?