Math 105A Summer 2017 Sample Questions (for Midterm) Aaron Chen

Problem 1

Let $g(x)=2-e^{-x}$. Show that fixed point iteration, $p_{n+1}=g\left(p_{n}\right)$ converges for any $p_{0} \in[1,3]$.

Problem 2

Find a fixed point iteration $p_{n+1}=g\left(p_{n}\right)$ converging quadratically for the equation $x=\cos (x)$ for sufficiently close starting points p_{0}. Include a justification for the quadratic convergence.

Problem 3

Suppose the sequence $\left\{p_{n}\right\}_{n=1}^{\infty}$ converges quadratically to $p=0$. Let $r_{n}=p_{2 n}$. What is the order of convergence of $\left\{r_{n}\right\}_{n=1}^{\infty}$?

Problem 4 (Example 2.5.8)

(a) Turn the root finding problem of solving $x-2^{-x}=0$ in [0, 1], into a fixed point problem.
(b) Using (a) and $p_{1}=1$, find p_{1}, \ldots, p_{5}. Then find $\hat{p}_{1}, \hat{p}_{2}, \hat{p}_{3}$ by applying Aitken's Δ^{2} method.
(c) How could we get a quadratic rate of convergence if we start p_{1} sufficiently close?

Problem 5

Consider the following Matlab code to multiply two lower triangular matrices L_{1}, L_{2} that are $n \times n$,

```
L = zeros(n,n);
for i = 1:n
    for j = 1:i
        for k = j:i
                L(i,j) = L(i,j) + L1(i,k)*L2(k,j);
            end
    end
end
```

Find the total operation count of the algorithm (that is, the number of additions and multiplications for this code). Finding the leading order term with correct coefficient is sufficient.

Problem 6

(a) Perform Gaussian Elimination with Partial Pivoting on the matrix $\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 4 & 6 \\ -1 & 2 & 5\end{array}\right]$.
(b) Use the calculations in (a) to find the matrices P, L, U in the factorization $P A=L U$.

Problem 7

Find all values of α, β, if any, such that this matrix is diagonally dominant: $\left[\begin{array}{ccc}3 & \beta & 1 \\ 2 \alpha & 3 & -1 \\ 1 & -1 & 2\end{array}\right]$.
(Optional): What α, β would make it positive definite?

