

$Math\ 105A\ Quiz\ 1\ \text{-}\ June\ 30th$ Please put name on front & ID on back for redistribution!

Show all of your work. *There is a question on the back side.*

- 1. Consider solving for the solution to $x^3 + x 4 = 0$ on [0,4]. In other words $[a_1, b_1] = [0, 4]$
- (a) [4pts] Using the Bisection Method, $p_1 = 2$ is the first approximation. What are the next two intervals $[a_2, b_2]$ and $[a_3, b_3]$, and the next two approximations p_2, p_3 to the solution?

First endpts satisfy
$$f(0) = -4 < 0$$
, $f(4) = 6470$.
 $[f(x) = x^3 + x - 4]$.
 $P_1 = 2 \implies f(2) = 8 + 2 - 4 = 670$. So
 $[a_{1}b_{2}] = [0,2] \implies P_{2} = 1$.
 $P_{2} = 1 \implies f(1) = 1 + 1 - 4 = -2 < 0$, so
 $[a_{3},b_{3}] = [1,2] \implies P_{3} = 1.5$ +2

(b) [6pts] If we wanted to find a solution with 10^{-3} accuracy, estimate a lower bound for the number of iterations required. (You can leave your answer with a logarithm with any base).

For Bisection Method.

Error is
$$|Pn-P| \le \frac{b-a}{2^n} \Rightarrow want < 10^3$$
.

Here, $\frac{4-0}{2^n} < 10^3 \iff \frac{2}{2^n} > 4 \times 10^3$.

 $|Pn-P| \le \frac{b-a}{2^n} \Rightarrow want < 10^3$.

 $|Pn-P| \le \frac{b-a}{2^n} \Rightarrow want < 10^3$.

 $|Pn-P| \le \frac{b-a}{2^n} \Rightarrow want < 10^3$.

(Solus contd)

2. Consider solving for a fixed point of $g(x) = \pi + \frac{1}{2}\sin(x/2)$ on $[0, 2\pi]$.

(a) [8pts] Prove that g(x) has a unique fixed point on this interval. Hint: Remember that sine and cosine are bounded between [-1,1].

IIs a continuou fir

Pf: (i) Need 9 to map [0,277] back within itself.

Since $-1 \le \sin(\frac{x}{2}) \le 1$, g(x) is between $[\pi - \frac{1}{2}, \pi + \frac{1}{2}]$ which is contained in $[0, 2\pi]$ \vee +4

(ii) Need 19'(x) 1 ≤ k for 0 < k < 1.

Here $g'(x) = \frac{1}{4} cos(\frac{x}{2})$ and since $-1 \leq cos(\frac{x}{2}) \leq 1$, $|g'(x)| \leq \frac{1}{4}$ so |k=1/4| works. +4

By the Fixed Pt Thm (Thm 2.3) => 9 has a unique fixed pt in [0,217]

[It's ok if you don't know Thm #]
[Need to use its parts correctly]

WA

(b) [2pts] If we start with $p_0 = 2\pi$, find the next two approximations p_1, p_2 of the Fixed-Point Iteration $p_{n+1} = g(p_n)$.

 $P_{1} = 5(P_{0}) = \pi + \frac{1}{2} \sin \left(\frac{2\pi}{2}\right) = \pi + \frac{1}{2} \sin \pi,$ $P_{1} = \pi + \frac{1}{2} \sin \pi$

 $P_{z}=g(p_{1})=\pi+\frac{1}{2}sin(\frac{\pi}{2})=\pi+\frac{1}{2}$

P2= TT + = +1