Ch 2.3 and 2.5 Worksheet - Math 3D Feb. 7th
 Aaron Chen

Chapter 2.3-Higher Order Linear ODEs

Summary: Still assume $y=e^{r x}$ and solve for r. Now there can be higher multiplicities, where we multiply by respective powers of x. We thus have to know linear independence for $3+$ functions, too.

1. Are $\left\{0, e^{x}+\cos x, e^{x}-\sin x, e^{x}\right\}$ linearly independent? What about $\left\{e^{r x}, x e^{r x}, x^{2} e^{r x}\right\}$?
2. (2.3.102)
(a) Find the general solution to $y^{\prime \prime \prime}-3 y^{\prime \prime}+4 y^{\prime}-12 y=0$.
(b) Find the general solution to an ODE with characteristic equation $r(r-1)^{3}\left(r^{2}-4 r+13\right)^{2}$.
3. $(2.3 .5,6)$

If $y(x)=2 x e^{4 x} \cos x$, what is the 4th order ODE it came from? What is its general solution? What are the initial conditions imposed to get this specific solution of $y(x)=2 x e^{4 x} \cos x$?

Chapter 2.5 - Nonhomogeneous (aka Inhomogeneous) Equations

Summary: Only for 2nd order equations, like $y^{\prime \prime}+a y^{\prime}+b y=f(x)$.
The general solution is of the form $y=y_{c}+y_{p}$ where y_{c} solves the homogeneous equation (Right side $\left.=0, \quad y_{c}^{\prime \prime}+a y_{c}^{\prime}+b y_{c}=0\right)$ and y_{p} solves specifically for the Right side's inhomogeneity $\left(y_{p}^{\prime \prime}+a y_{p}^{\prime}+b y_{p}=f\right)$. They are called the Complementary and Particular pieces.

There are two methods for inhomogeneous equations:

1) Variation of Parameters: Harder to solve but always works.
2) Undetermined Coefficients: Easier to solve but needs a good guess.

For both, the 1st step is to find the form of $y_{c}(x)=A_{1} y_{1}(x)+A_{2} y_{2}(x)$ like in Ch 2.2. From there:

1) For Variation of Parameters: ** Make sure the coefficient of $y^{\prime \prime}$ is a 1 !! **

- Solve for the functions $u_{1}^{\prime}, u_{2}^{\prime}$ from the system

$$
\left\{\begin{array}{l}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f(x)
\end{array}\right.
$$

- Integrate to find u_{1}, u_{2}.
- The particular solution is given by $y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)$.
- Then $y(x)=C_{1} y_{1}(x)+C_{2} y_{2}(x)+y_{p}(x)$. If we have initial conditions, we can solve for C_{1} and C_{2}.
${ }^{* *}$ When solving for C_{1}, C_{2}, don't forget there is a $y_{p}(x)$ there, too! **

2) For Undetermined Coefficients: Make an educated "guess" for a general form of $y_{p}(x)$. Then, plug y_{p} into the differential equation and solve for the specific form of y_{p}. Here are some guesses and some rules of guessing. Hopefully you can pick up the idea:
. If $f(x)$ is a polynomial of degree k : Guess $y_{p}(x)=A_{0}+A_{1} x+. .+A_{k} x^{k}$.
. If $f(x)=\sin k x$ or $\cos k x$ or both: Guess $y_{p}(x)=A_{1} \sin k x+A_{2} \cos k x$. We must include both!
. If $f(x)=e^{k x}$: Guess $y_{p}(x)=A e^{k x}$.
. Solve for the constants by making $y_{p}^{\prime \prime}+a y_{p}^{\prime}+b y_{p}=f(x)$ hold.
Rule 1: If $f(x)$ has a piece of the Complementary solution, rescale the guess by x^{d} where d is the multiplicity of the complementary solution.
Rule 2: If $f(x)$ is a sum or product of these types of functions, y_{p} is similarly a sum or product of the types of guesses.
. After we've solved for y_{p}, then $y(x)=C_{1} y_{1}(x)+C_{2} y_{2}(x)+y_{p}(x)$. Again, we can solve for C_{1}, C_{2} if we have initial conditions. Don't forget there's a $y_{p}(x)$ there!

If you can't see the guess for undetermined coefficients, or don't want to do undetermined coefficients, you have to use Variation of Parameters.

1. Consider $y^{\prime \prime}-5 y^{\prime}+6 y=e^{3 x}$. Find a particular solution with Variation of Parameters. If you were to use Undetermined coefficients, what would you guess for the form of y_{p} ?
2. (2.5.102)

If $y^{\prime \prime}-2 y^{\prime}+y=e^{x}+x^{3}$, find a particular solution to the equation.
3. What would be a good guess for y_{p} with Undetermined Coefficients for the following equations:
i. $y^{\prime \prime}-2 y^{\prime}+y=e^{3 x}+x^{2}$.
ii. $y^{\prime \prime}+4 y=\cos 2 x+\sin x$.
iii. $y^{(5)}-y^{(4)}=x^{2}$.

For practice, try to solve for y_{p} in each case.

