Math 3D Summer 2016
 Homework 3 Solutions

Aaron Chen

Chapter 1 Section 5

Problem 1

Solve $y^{\prime}+y\left(x^{2}-1\right)+x y^{6}=0, y(1)=1$.
Solution. This is a Bernoulli eqn, so we use $v=y^{1-6}=y^{-5}$. Then $v^{\prime}=-5 y^{-6} y^{\prime} \Longleftrightarrow y^{\prime}=-\frac{v^{\prime} y^{6}}{5}$. Plugging in for y^{\prime} first, we see

$$
-\frac{y^{6}}{5} v^{\prime}+y\left(x^{2}-1\right)+x y^{6}=0
$$

Next, divide by y^{6} to get (the middle term becomes $\frac{1}{y^{5}}=v!$)

$$
-\frac{v^{\prime}}{5}+v\left(x^{2}-1\right)+x=0 \Longleftrightarrow v^{\prime}+5\left(1-x^{2}\right) v-5 x=0
$$

which we can now solve with integrating factor,

$$
R(x)=e^{\int 5\left(1-x^{2}\right) d x}=e^{5\left(x-\frac{x^{3}}{3}\right)} .
$$

Then, as we know what results from integrating factors,

$$
\frac{d}{d x}\left(e^{5\left(x-\frac{x^{3}}{3}\right)} v\right)=5 x e^{5\left(x-\frac{x^{3}}{3}\right)} .
$$

Again, I don't think the RHS has any fundamental antiderivative. You can follow the formula on Pg. 33 above Exercise 1.4.2, with that $v(1)=1^{-5}=1$ since $y(1)=1$,

$$
R(x)=e^{\int_{1}^{x}} 5\left(1-t^{2}\right) d t=e^{5\left(x-\frac{x^{3}}{3}\right)-10 / 3} \longrightarrow v(x)=e^{5\left(\frac{x^{3}}{3}-x\right)+10 / 3}\left[1+\int_{1}^{x} 5 t e^{5\left(t-\frac{t^{3}}{3}\right)-10 / 3} d t\right]
$$

But here is another perspective:
As an integral function,

$$
e^{5\left(x-\frac{x^{3}}{3}\right)} v=\int_{1}^{x} 5 t e^{5\left(t-\frac{t^{3}}{3}\right)} d t+C
$$

If $y(1)=1$, then $v(1)=1$ too. Hence at $x=1, v=1$, we have $e^{5(2 / 3)}=0+C, C=e^{10 / 3}$. Thus,

$$
v(x)=e^{-5\left(x-\frac{x^{3}}{3}\right)}\left[\int_{1}^{x} 5 t e^{5\left(t-\frac{t^{3}}{3}\right)} d t+e^{10 / 3}\right]
$$

${ }^{* * * * *}$ This v is the same as if we used that formula on Page 33!!*****
Since $v(x)=y(x)^{-5}$, we raise everything to the $-1 / 5$ power,

$$
y(x)=e^{\left(x-\frac{x^{3}}{3}\right)}\left[e^{10 / 3}+\int_{1}^{x} 5 t e^{5\left(t-\frac{t^{3}}{3}\right)} d t\right]^{-1 / 5} .
$$

We lastly note the domain is the whole real line. It turns out we have no issues of division by zero. (The integral term can never be less than $-e^{10 / 3}$.) We also see that y is never zero since exp is never zero, so our Bernoulli substitution is valid.

Problem 2

Solve $2 y y^{\prime}+1=y^{2}+x$ with $y(0)=1$.
Solution. With $v=y^{2}$, we have $v^{\prime}=v+x-1$. We need to do another substitution of $w=v+x-1$ so $v^{\prime}=w^{\prime}-1$. Then,

$$
w^{\prime}-1=w \Longleftrightarrow w^{\prime}=w+1 .
$$

So,

$$
\ln |w+1|=x+C, \Longrightarrow \ln |v+x-1+1|=x+C, \Longrightarrow \ln \left|y^{2}+x\right|=x+C .
$$

We choose the positive branch of $\left|y^{2}+x\right|$ because $y(0)=1$, we need the positive case to make sense of natural \log. Also solving for C,

$$
\ln |1|=0+C, \quad C=0 .
$$

And undoing the natural log, we get

$$
y^{2}+x=e^{x}, \quad y= \pm \sqrt{e^{x}-x} .
$$

Because $y(0)=1$, we choose the + case and also we need $e^{x}-x>0$ but this holds for all x. So,

$$
y(x)=\sqrt{e^{x}-x}, \quad x \in \mathbb{R}
$$

Problem 3

Solve $y^{\prime}+x y=y^{4}$ with $y(0)=1$.
Solution. This is a Bernoulli equation so we use $v=y^{-3}$. Thus $y=v^{-1 / 3}, y^{\prime}=\frac{-v^{\prime}}{3 v^{4 / 3}}$. Plugging in,

$$
\frac{-v^{\prime}}{3 v^{4 / 3}}+x v^{-1 / 3}=v^{-4 / 3}
$$

and multiplying everything by $-3 v^{4 / 3}$,

$$
v^{\prime}-3 x v=-3
$$

Solving this by using integrating factor, $R(x)=e^{-3 x^{2} / 2}$,

$$
e^{-3 x^{2} / 2} v=\int-3 e^{-3 x^{2} / 2} d x+C \Longleftrightarrow y^{-3}=e^{3 x^{2} / 2}\left[\int-3 e^{-3 x^{2} / 2} d x+C\right]
$$

The integral isn't computable by hand, so we use instead that

$$
y^{-3}=e^{3 x^{2} / 2}\left[\int_{0}^{x}-3 e^{-3 t^{2} / 2} d t+C\right] .
$$

Since $y(0)=1$, we have $1=e^{0}[0+C], C=1$, and we undo the power of y,

$$
y(x)=e^{-x^{2} / 2}\left[1-3 \int_{0}^{x} e^{-3 t^{2} / 2} d t\right]^{-1 / 3} .
$$

As for the domain, we just need that $1-3 \int_{0}^{x} e^{-3 t^{2} / 2} d t$ is never zero. Numerically solving, I got that the domain is $(-\infty, 0.35)$ approximately.

Problem 4

Solve $y y^{\prime}+x=\sqrt{x^{2}+y^{2}}$.
Solution. The thing to note here is that $y y^{\prime}+x$ looks like the half of the derivative of $y^{2}+x^{2}$. So, we should substitute $u=y^{2}+x^{2}$. Using this, our ODE is now

$$
\frac{u^{\prime}}{2}=\sqrt{u}
$$

where separating,

$$
\frac{u^{\prime}}{\sqrt{u}}=2 \Longrightarrow 2 \sqrt{u}=2 x+C
$$

(This is only okay if $u \ngtr 0$). Then plugging in for u,

$$
\sqrt{x^{2}+y^{2}}=x+D, \quad\left(x^{2}+y^{2}\right)=(x+D)^{2} .
$$

Solving for y gets us

$$
y= \pm \sqrt{(x+D)^{2}-x^{2}} .
$$

Notice there are a lot of issues with the domain of definition being well defined if we had to find a particular solution given some initial condition. We'd also have to choose between \pm cases.

Remark. It may have been common to try to use $v=y^{2}$ like on the table of common substitutions because we see a $y y^{\prime}$ term. It is still fine! Then, we have

$$
\frac{v^{\prime}}{2}+x=\sqrt{x^{2}+v}
$$

However we note that this is still not exactly an equation we can solve or separate. We still have to acknowledge that we should use another substitution $w=x^{2}+v$ because we see that $\frac{v^{\prime}}{2}+x=\frac{w^{\prime}}{2}$. We then have the ODE $w^{\prime}=2 \sqrt{w}$ which is the same as in the solution above. Also note now, $w=x^{2}+v=x^{2}+y^{2}$ is our overall substitution, same as in the solution above.

Problem 5

Solve $y^{\prime}=(x+y-1)^{2}$.
Solution. We first are inclined to set $w=x+y-1$, so thus $y^{\prime}=w^{\prime}-1$. Then

$$
y^{\prime}=(x+y-1)^{2} \Longrightarrow w^{\prime}-1=w^{2} \Longleftrightarrow w^{\prime}=w^{2}+1
$$

Separating and integrating,

$$
\int \frac{d w}{w^{2}+1}=\int d x+C \Longleftrightarrow \arctan (w)=x+C
$$

Thus, with $w=x+y-1$, the general solution is

$$
(x+y-1)=\tan (x+C) \Longleftrightarrow y=1-x+\tan (x+C)
$$

Problem 6

Solve $y^{\prime}=\frac{x^{2}-y^{2}}{x y}$ with $y(1)=2$.
Solution. Notice that this is just $y^{\prime}=\frac{x}{y}-\frac{y}{x}$ so this is a homogeneous equation. Using $v=y / x$,

$$
x v^{\prime}+v=\frac{1}{v}-v \Longleftrightarrow \frac{d v}{d x}=\frac{\frac{1}{v}-2 v}{x} \Longleftrightarrow \frac{v d v}{1-2 v^{2}}=\frac{d x}{x}
$$

Again we see this has problems if $x, y=0$ just to keep in mind. Solving this, we use a u-sub of $u=1-2 v^{2}$ to get

$$
-\frac{1}{4} \ln \left|1-2 v^{2}\right|=\ln |x|+C \Longleftrightarrow D=4 \ln |x|+\ln \left|1-2(y / x)^{2}\right| .
$$

Since $y(1)=2$, we actually have to take the following branches of the absolute value,

$$
D=4 \ln (x)+\ln \left(2 \frac{y^{2}}{x^{2}}-1\right) .
$$

At $y(1)=2$, we have $D=\ln (8-1)=\ln (7)$. Thus, taking exponential,

$$
7=x^{4} \cdot\left(\frac{2 y^{2}}{x^{2}}-1\right) \Longleftrightarrow 7=2 y^{2} x^{2}-x^{4} \Longleftrightarrow y= \pm \sqrt{\frac{x^{2}}{2}+\frac{7}{2 x^{2}}}
$$

where from the I.C., and recall that our substitution is only valid for $x, y \neq 0$,

$$
y(x)=\sqrt{\frac{x^{2}}{2}+\frac{7}{2 x^{2}}}, \quad x>0 .
$$

