
Math 3D Practice Final (2014)
Aaron Chen

Problem 1

General solution to y′′′′ + y′′ = t2 with undetermined coefficients.

Solution. First, we get the homogeneous solution. The auxiliary equation is

r4 + r2 = 0 ⇐⇒ r2(r2 + 1) = 0, r = 0 (mult. 2) ,±i.

Thus,
yc = C0 + C1t+ C2 cos t+ C3 sin t.

Now we use undetermined coefficients to get yp, and since the RHS is t2 while up to linear terms
are complementary solutions, we actually have to account for two extra powers. (Another way to
see this is to see the lowest order derivative of y, here it’s 2nd order, so we have to go to t2 (from
the RHS) * t2 (from the 2nd order derivative) = t4 ).
Thus, we should actually guess

yp = At4 +Bt3 + Ct2.

With this,
y′′p = 12At2 + 6Bt+ 2C, y′′′′p = 24A.

Plugging into the ODE and matching coefficients for powers of t,

(24A) + (12At2 + 6Bt+ 2C) = t2.

We read off that we need: 
constant : 24A+ 2C = 0

t : 6B = 0

t2 : 12A = 1.

Thus, we see A = 1/12, B = 0, and 2 + 2C = 0 ⇐⇒ C = −1. We get all the coefficients, so

yp =
t4

12
− t2.

Thus, the general solution is yc + yp which is

y(t) = C0 + C1t+ C2 cos t+ C3 sin t+
t4

12
− t2.

Problem 2

General solution to 3y′′ + 4y′ + y = e−t sin(t) with variation of parameters.

Solution. Again, first solve the homogeneous case, so begin with the auxiliary equation

3r2 + 4r + 1 = 0 ⇐⇒ (3r + 1)(r + 1) = 0 ⇐⇒ r = −1,−1/3.

So, the complementary solution is

yc = C1e
−t + C2e

−t/3
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where in particular, y1 = e−t and y2 = e−t/3 are our two functions to use for variation of parameters.
Proceeding with that method for the particular solution, we assume that

yp = u1(t)y1(t) + u2(t)y2(t)

where the functions u1, u2 satisfy
u′1y1 + u′2y2 = 0

u′1y
′
1 + u′2y

′
2 = f(t).

*Be Careful!!* See page 74 right under where these equations are boxed. We need the ODE to
actually read as L(y) = y′′ + p(x)y′ + q(x) → mainly, the coefficient of y′′ must be 1!
Thus, we need to rewrite our ODE as

y′′ +
4

3
y′ +

y

3
=
e−t

3
sin t.

Specifically plugging in for y1, y2 and this f(t) now, our system is{
u′1e
−t + u′2e

−t/3 = 0

−u′1e−t −
u′2
3 e
−t/3 = e−t sin t

3 .

Adding the two lines yields

2

3
u′2e
−t/3 =

e−t sin t

3
⇐⇒ u′2 =

1

2
e−2t/3 sin t.

Using this in the 1st line yields

u′1e
−t = −1

2
e−3t/3 sin t ⇐⇒ u′1 = −1

2
sin t.

Integrating, we get that

u1(t) =

∫
−1

2
sin tdt =

1

2
cos t.

Similarly, we have to do this for u2, where now,

u2(t) =
1

2

∫
e−2t/3 sin tdt

where in particular, ∫
e−2t/3 sin tdt = −e−2t/3 cos t−

∫
+

2e−2t/3

3
cos tdt

= −e−2t/3 cos t− 2e−2t/3

3
sin t+

∫
−4e−2t/3

9
sin tdt.

Thus, we get that

13

9

∫
e−2t/3 sin tdt = e−2t/3[−2 sin t

3
− cos t] ⇐⇒

∫
et/3 sin tdt =

9

13
e−2t/3 [−2 sin t

3
− cos t].
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Hence, we have our u1, u2:

u1(t) =
− sin t

2
, u2(t) =

1

2
· 9

13
e−2t/3

[
− cos t− 2 sin t

3

]
.

Thus we can just plug in now,
yp = u1e

−t + u2e
−t/3

yp =
1

2
e−t cos t+

1

2
· 9

13
e−t · [−2 sin t

3
− cos t]

because −9/26 + 1/2 = (13− 9)/26 for the cos t coefficient,

= e−t
[
− 3

13
sin t+

2

13
cos t

]
(Now this is the same answer as in Wolframalpha!)
Anywho, the final solution is yp + yc,

y = yc + yp = C1e
−t + C2e

−t/3 + e−t
[

2

13
cos t− 3

13
sin t

]
Problem 3

General solution to the system ~x ′ =

 1 0 1
0 1 −1
−2 0 −1

 ~x.

Solution. First we need the eigenvalues and eigenvectors,

cA(λ) = det

1− λ 0 1
0 1− λ −1
−2 0 −1− λ

 = (1− λ)(λ2 − 1) + 1(2 ∗ (1− λ))) = (1− λ)(λ2 + 1)

so thus λ = 1,±i. Now to find their eigenvectors (let them be of the form ~v =

ab
c

)

λ = 1 :


0 0 1

...0

0 0 −1
...0

−2 0 −2
...0

 clear Col 3∼


0 0 1

...0

0 0 0
...0

−2 0 0
...0

 −→ a = c = 0, b = free

so thus we have our one eigenvector of ~v1 =

0
1
0

. You may have also noticed this that it was the

2nd column and used it from observation.

For the complex pairs, we only need to do work on one of them, lets say λ = i:
1− i 0 1

...0

0 1− i −1
...0

−2 0 −1− i
...0

 R3=R3+(1+i)R1∼


1− i 0 1

...0

0 1− i −1
...0

0 0 0
...0.
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where notably, (1− i)(1 + i) = 1− i2 = 2. We should also make the 1st and 2nd pivot columns real
numbers, so multiply by (1 + i) to all the terms now, (again using that (1− i)(1 + i) = 2)

2 0 1− i
...0

0 2 −(1− i)
...0

0 0 0
...0

 −→ a =
i− 1

2
c, b =

1− i
2

c, c = free

so our eigenvector is ~v =

i− 1
1− i

2

 We have that this would give us terms like

eit

i− 1
1− i

2

 = (cos t+ i sin t)

i− 1
1− i

2

 =

− cos t− sin t
cos t+ sin t

2 cos t

+ i

 cos t− sin t
− cos t+ sin t

2 sin t


and with this, hence, our general solution is of the form

~x(t) = C1e
t

0
1
0

+ C2

− cos t− sin t
cos t+ sin t

2 cos t

+ C3

 cos t− sin t
− cos t+ sin t

2 sin t

 .
Problem 4

General solution with undetermined coefficients for ~x ′ =

[
3 −4
1 −1

]
~x+

[
1
1

]
.

Solution. First we need the complementary solution - find the eigenvalues/vectors. First,

cA(λ) = (3− λ)(−1− λ) + 4 = λ2 − 2λ+ 1 = (1− λ)2, λ = 1 (mult. 2)

so thus we need to check if it’s defective, too. First getting the eigenvector(s) of the form

[
a
b

]
:

2 −4
...0

1 2
...0

 −→ a = 2b, ~v1 = b

[
2
1

]
.

There’s only one, so we need another generalized eigenvector. For example,2 −4
...2

1 2
...1

 ∼
1 −2

...1

0 0
...0

 −→ a = 2b+ 1, ~v2 =

[
1
0

]
+ b~v1 (let b = 0).

We get a complementary solution of

~xc = C1e
t

[
2
1

]
+ C2e

t

([
1
0

]
+ t

[
2
1

])
.

For the particular solution since our ~f =

[
1
1

]
we should guess that ~xp =

[
a1
a2

]
. Plugging this into

the ODE, we have that[
0
0

]
=

[
3 −4
1 −1

] [
a1
a2

]
+

[
1
1

]
⇐⇒

[
3 −4
1 −1

] [
a1
a2

]
=

[
−1
−1

]
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where solving this,3 −4
...− 1

1 −1
...− 1

 ∼
0 −1

...2

1 −1
...− 1

 ∼
0 1

...− 2

1 0
...− 3

 ⇐⇒ ~xp =

[
−3
−2

]
so the general solution is hence

~x = C1e
t

[
2
1

]
+ C2e

t

([
1
0

]
+ t

[
2
1

])
+

[
−3
−2

]
Problem 5

Solve y′′ + y = tet with y(0) = y′(0) = 0 by Laplace transform.

Solution. Since the I.C. are zero, the transform is reasonably nice:

s2Y (s) + Y (s) =
1

(s− 1)2

where recall that L(eatf(t)) = F (s− a). We see that we have

Y (s) =
1

(s− 1)2(s2 + 1)

so decomposing into partial fractions,

=
A

s− 1
+

B

(s− 1)2
+
Cs+D

s2 + 1
.

In other words, we need

1 = A(s− 1)(s2 + 1) +B(s2 + 1) + (Cs+D)(s− 1)2.

Plugging in s = 1 tells us that 2B = 1 ⇐⇒ B = 1/2. Now we can go through powers of s:
(first expand out the above line and then read off that:)

s3 : 0 = A+ C

s2 : 0 = −A+ 1/2− 2C +D

s : 0 = A+ C − 2D

1 : 1 = −A+ 1/2 +D.

Since A+ C = 0 we infer D = 0 for s. This means for 1, A = −1/2. Lastly, C = 1/2 then. So, we
have that

Y (s) =
1

(s− 1)2(s2 + 1)
=
−1/2

(s− 1)
+

1/2

(s− 1)2
+

s/2

s2 + 1

where we can now invert this:

y(t) = −e
t

2
+
tet

2
+

cos t

2
.

(We can/should check that the I.C. are satisfied:){
y(0) = −e0/2 + cos(0)/2 = 0 :)

y′(0) = −e0/2 + e0/2− sin(0)/2 = 0 :)

(And you could even moreover check that y′′ + y = tet too).
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Problem 6

Solve y′′ + t2y + 2ty = 0 with y(0) = 1, y′(0) = 0 by power series.

Solution. We are expanding about t = 0 so we assume y(t) =
∞∑
k=0

akt
k. Thus,

∞∑
k=2

k(k − 1)akt
k−2 + t2

∞∑
k=0

akt
k + 2t

∞∑
k=0

akt
k = 0.

i.e.
∞∑
k=2

k(k − 1)akt
k−2 +

∞∑
k=0

akt
k+2 + 2

∞∑
k=0

akt
k+1 = 0.

The first series starts at a constant, the 2nd at quadratic, and the 3rd at linear, so our main series
should start at k = 2 and we pull out the prior terms:

2a2 + (6a3 + 2a0)t+
∞∑
k=2

tk[(k + 2)(k + 1)ak+2 + ak−2 + 2ak−1] = 0.

Thus, we can extrapolate the recursion relation:
a0, a1 = free (to be determined with I.C.

a2 = 0

a3 = −a0/3
ak+2 =

−2ak−1−ak−2

(k+2)(k+1) , k ≥ 2.

In particular, we know that a0 = y(0) = 1 and a1 = y′(0) = 0 so we can use this simplification.
Thus, when we tabulate the coefficients,

a0 = 1

a1 = 0

a2 = 0

a3 = −1/3

a4 = (−2a1 − a0)/(4 ∗ 3) = −1/12

a5 = (−2a2 − a1)/(5 ∗ 4) = 0

a6 = (−2a3 − a2)/(6 ∗ 5) = 2/(6 ∗ 5 ∗ 3)

a7 = (−2a4 − a3)/(7 ∗ 6) = 1/(7 ∗ 6 ∗ 2)
...

so our series looks like

y(x) = 1− x3

3
− x4

12
+
x6

45
+
x7

84
− ...
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