Math 3D Practice for the Final (2017)
 Aaron Chen

Problem 1

Review past quizzes / midterms / homework solutions on the discussion website for material prior to Chapter 2. [Also review them for the material after Chapter 2, too.]
Especially the Quizzes!

Problem 2 (Ch 2.5)

(a) General solution to $m x^{\prime \prime}+c x^{\prime}+k x=0$ where $m=3 \mathrm{~kg}, c=4 \mathrm{~kg} / \mathrm{s}, k=1 \mathrm{~N} / \mathrm{m}$.
(b) Classify the damping.
(c) Reduce the order of the equation and solve the system using the Eigenvalue method.

Problem 3 (Ch 3.4)

General solution to the system $\vec{x}^{\prime}=\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & -1 \\ -2 & 0 & -1\end{array}\right] \vec{x}$.

Problem 3 and 1/2

Review Exercises 3.3 \# 3-5 in Homework 5 on Linear Independence of Vector Valued Functions.
Reminder: 3.3.5 was a graded homework problem and 3.3.4 was one we may have done in discussion.
Problem 4 (Ch 3.7,8)
Exact solution to $\vec{x}^{\prime}=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right] \vec{x}$, with initial condition $\vec{x}(1)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ e using matrix exponent.
Check your answer by using methods in 3.7.

Problem 5 (Ch 6.1,2)

Solve $y^{\prime \prime}+y=t e^{t}$ with $y(0)=y^{\prime}(0)=0$ by using Laplace transform.

Problem 6 (Ch 6.2,3)

(This is Exercise 6.3.9) Solve $x^{\prime \prime}-2 x=e^{-t^{2}}$ with $x(0)=0, x^{\prime}(0)=0$.
Leave the answer as a definite integral. Hint: Use a convolution in the inverse Laplace transform.

