# Math 3D 2014 Practice Midterm Solutions 

Aaron Chen

Problem 1: Solve $x^{2} y^{\prime}=y-x y$ satisfying $y(-1)=-1$.
Solution. First rewrite it as

$$
y^{\prime}=y \frac{1-x}{x^{2}}
$$

so then this becomes separable, using Leibniz notation just for clarity,

$$
\frac{d y}{y}=\frac{(1-x)}{x^{2}} d x
$$

where we keep in mind that $x=0$ and $y=0$ are bad points. Integrating,

$$
\ln |y|=-\frac{1}{x}-\ln |x|+C \Longleftrightarrow \ln |y|=-\frac{1}{x}+\ln \frac{1}{|x|}+C .
$$

Due to the I.C, we take the negative branch of absolute value to make sure the natural $\log$ is well defined. Also we take exponent,

$$
-y=D \frac{1}{-x} e^{-\frac{1}{x}}
$$

and with the initial condition, we see $1=D e^{1}, \quad D=e^{-1}$. So,

$$
y(x)=\frac{1}{x} e^{-\frac{1}{x}-1} .
$$

There are only issues when $x$ or $y$ are 0 , so hence our domain of validity is $(-\infty, 0)$.
Problem 2: General solution to $x y^{2} y^{\prime}=y^{3}-x^{3}$.
Solution. This has 2 substitutions which both work.

1) Sub $v=y^{3}$ : Then $v^{\prime}=3 y^{2} y^{\prime}$. The equation becomes

$$
x \frac{v^{\prime}}{3}-v=-x^{3}, \quad v^{\prime}-\frac{3 v}{x}=-3 x^{2} .
$$

This is solved with an integration factor of $R(x)=e^{-3 \ln |x|}=|x|^{-3}= \pm x^{-3}$ depending on the initial condition. Thus, we know from integration factors, after we multiply $R(x)$ to both sides,

$$
\frac{d}{d x}\left( \pm x^{-3} v\right)=\mp \frac{3}{x}, \quad \pm x^{-3} v=\mp 3 \ln |x|+C .
$$

Since $v=y^{3}$,

$$
y=\sqrt[3]{D x^{3}-3 x^{3} \ln |x|}
$$

2) Note that the degree of all the terms is 3 . Thus, divide $x y^{2}$ to obtain $y^{\prime}=\frac{y}{x}-\frac{x^{2}}{y^{2}}$. So, we $\operatorname{sub} v=y / x$. Then $y^{\prime}=x v^{\prime}+v$, and we obtain

$$
x v^{\prime}+v=v-1 / v^{2} \Longleftrightarrow x v^{\prime}=-1 / v^{2}, \quad v^{2} d v=-\frac{d x}{x} .
$$

Solving, we get

$$
\frac{v^{3}}{3}=-\ln |x|+C, \quad \frac{y^{3}}{3 x^{3}}=-\ln |x|+C .
$$

Thus, renaming $D=3 C$, our general solution is

$$
y=\sqrt[3]{D x^{3}-3 x^{3} \ln |x|}
$$

Comments: We see we get the same answer either way. Also, note that there are issues with the domain of definition such as $x \neq 0$ in our substitutions, and choosing branches of absolute value.

Problem 3: General solution to $y^{\prime}+3 x^{2} y=x^{2}$.
Solution. This is directly an integrating factor setup. Here $R(x)=e^{\int 3 x^{2} d x}=e^{x^{3}}$. Then, we know we multiply both sides by $R(x)$,

$$
e^{x^{3}} y^{\prime}+3 x^{2} e^{x^{3}} y=x^{2} e^{x^{3}}
$$

where we know the integration factor makes the LHS a product rule,

$$
\frac{d}{d x}\left(e^{x^{3}} y\right)=x^{2} e^{x^{3}} \longrightarrow e^{x^{3}} y=\int x^{2} e^{x^{3}} d x+C
$$

The integral we can actually calculate,

$$
\int x^{2} e^{x^{3}} d x \stackrel{u=x^{3}}{=} \int e^{u} \frac{d u}{3}=\frac{e^{u}}{3}=\frac{e^{x^{3}}}{3} .
$$

Thus,

$$
e^{x^{3}} y=\frac{e^{x^{3}}}{3}+C \Longleftrightarrow y=C e^{-x^{3}}+\frac{1}{3} .
$$

Problem 4: Solve $4 y^{\prime \prime}+4 y^{\prime}+17 y=0$ satisfying $y(0)=-1, y^{\prime}(0)=2$.
Solution. First we look at the auxiliary (aka characteristic equation), from assuming $y=e^{r x}$,

$$
4 r^{2}+4 r+17=0 .
$$

We can find the roots in one of two ways:

1) Factor as $(2 r+1)^{2}+16=0$, implying that $(2 r+1)= \pm 4 i \Longleftrightarrow r=-\frac{1}{2} \pm 2 i$.
2) Quadratic formula:

$$
r=\frac{-4 \pm \sqrt{16-16 \cdot 17}}{8}=\frac{-4 \pm \sqrt{-16 \cdot 16}}{8}=\frac{-4 \pm 16 i}{8}=-\frac{1}{2} \pm 2 i .
$$

Either way, we get the correct roots for $r$. We also see these are complex, so we know the general solution must be of the form

$$
y(x)=e^{-x / 2}[A \cos (2 x)+B \sin (2 x)] .
$$

We solve for $A, B$ with the initial conditions,

$$
y(0)=-1: \quad-1=e^{0}[A+0] \Longleftrightarrow A=-1 .
$$

For the $y^{\prime}(0)=2$ initial condition, we need $y^{\prime}$ first, (and plug in $A=-1$ )

$$
y^{\prime}(x)=-\frac{1}{2} e^{-x / 2}[-\cos (2 x)+B \sin (2 x)]+e^{-x / 2}[+2 \sin (2 x)+2 B \cos (2 x)]
$$

So $y^{\prime}(0)=2: \quad 2=-\frac{1}{2} e^{0}[-1+0]+e^{0}[0+2 B] \Longleftrightarrow 2 B=2-\frac{1}{2}=\frac{3}{2} \Longleftrightarrow B=\frac{3}{4}$.
Thus, $y(x)=e^{-x / 2}\left[-\cos (2 x)+\frac{3}{4} \sin (2 x)\right]$.

