Math 3D Practice Quiz for Midterm

July 1st, 2016

Problem 1. (a) is 3 pts , (b) is 7 pts .

a) Recall from homework that a couple of solutions to the differential equation $\left[x^{\prime}(t)\right]^{2}+[x(t)]^{2}=4$ were $x_{1}(t)=2 \cos (t)$ and $x_{2}(t)=2 \sin (t)$. This equation is not linear (the x, x^{\prime} terms are squared). Show that this equation does not satisfy the superposition principle. [Hint: Consider $x=x_{1}+x_{2}$.]
Solution. Let us see if the sum of the solutions is a solution. Note that

$$
x=2(\cos t+\sin t), \quad x^{\prime}=2(-\sin t+\cos t)
$$

Then,

$$
\begin{gathered}
\left(x^{\prime}\right)^{2}+x^{2}=4\left(\cos ^{2} t-2 \cos t \sin t+\sin ^{2} t\right)+4\left(\cos ^{2} t+2 \cos t \sin t+\sin ^{2} t\right) \\
=8\left(\cos ^{2} t+\sin ^{2} t\right)=8
\end{gathered}
$$

But $8 \neq 4$ so we see the sum of these two solutions is NOT a solution - the superposition principle fails for this differential equation.
b) Suppose the population growth of mushrooms is given by $P^{\prime}=(1-t) P$. If initially at time $t=0$ we have 1000 mushrooms, find the number of mushrooms at $t=2$. What happens as $t \rightarrow \infty$? Solution. We can do this with either an integrating factor or by separation (separation is easier).

Separation: We have that $\frac{d P}{P}=(1-t) d t$ so integrating, $\ln |P|=t-\frac{t^{2}}{2}+C$. Population is never negative, and undoing the natural log,

$$
P(t)=D e^{t-\frac{t^{2}}{2}}, \stackrel{P(0)=1000}{\Longrightarrow} D=1000, \quad P(t)=1000 e^{t-\frac{t^{2}}{2}}
$$

So, at $t=2$, we have $1000 e^{2-\frac{4}{2}}=1000$ mushrooms still. But as $t \rightarrow \infty, P(t) \rightarrow 0$.
Integrating Factor: We see that $P^{\prime}+(t-1) P=0$ so $R(t)=e^{\frac{t^{2}}{2}-t}$ is the integrating factor. Multiplying this to both sides,

$$
e^{\frac{t^{2}}{2}-t} P^{\prime}+(t-1) e^{\frac{t^{2}}{2}-t} P=0 \Longleftrightarrow \frac{d}{d t}\left(e^{\frac{t^{2}}{2}-t} P\right)=0
$$

Integrating, we have that

$$
e^{\frac{t^{2}}{2}-t} \cdot P(t)=C \Longleftrightarrow P(t)=C e^{t-\frac{t^{2}}{2}}
$$

Then, continue from separation, we see $C=1000$ and etc... (the rest is the same).

Problem 2. 10pts

a) Find the explicit solution to $x y y^{\prime}+y^{2}=-4 x^{2}$ with $y(2)=-7$ and $x>0$.
b) What is the interval of validity? Namely, the interval of validity is of the form $\left(0, x_{F}\right)$. I would like you to find x_{F} for the interval of validity.
Solution. a) This also has two substitutions that are possible.
Soln (i): Using $v=y^{2}$ this becomes $\frac{x v^{\prime}}{2}+v=-4 x^{2} \Longrightarrow v^{\prime}+\frac{2 v}{x}=-8 x$. Solving this with an integration factor, $R(x)=e^{2 \ln |x|}=e^{\ln \left(x^{2}\right)}=x^{2}$, we have that

$$
\frac{d}{d x}\left(x^{2} v\right)=-8 x^{3}, \quad x^{2} v=-2 x^{4}+C \Longleftrightarrow y^{2}=-2 x^{2}+\frac{C}{x^{2}}, \quad y= \pm \sqrt{\frac{C}{x^{2}}-2 x^{2}} .
$$

The condition $y(2)=-7$ tells us that $49=-8+\frac{C}{4}, C=57 \cdot 4=228$. Also $y=-7$ so we actually choose the negative case of the square root. Hence

$$
y(x)=-\sqrt{\frac{228}{x^{2}}-2 x^{2}}
$$

Soln (ii): If we divide by $x y$, this is a homogeneous equation $y^{\prime}=\frac{-4 x}{y}-\frac{y}{x}$. Using $v=y / x, y=x v$, we have

$$
x v^{\prime}+v=-\frac{4}{v}-v, \quad v^{\prime}=\frac{-4 v^{-1}-2 v}{x}=-\frac{\frac{4+2 v^{2}}{v}}{x}
$$

so separating and integrating, (we use a u-sub of $u=2 v^{2}+4, d u=4 v d v$.)

$$
\frac{v d v}{2 v^{2}+4}=-\frac{d x}{x}, \Longrightarrow \frac{1}{4} \ln \left|2 v^{2}+4\right|=-\ln |x|+C .
$$

First let's rearrange / rewrite it, (you could just leave C to take place of $4 C$ if you wish),

$$
\ln \left|2 v^{2}+4\right|=-4 \ln |x|+4 C \Longleftrightarrow \ln \left|2 v^{2}+4\right|+\ln \left|x^{4}\right|=4 C \Longleftrightarrow \ln \left|2 v^{2} x^{4}+4 x^{4}\right|=4 C
$$

Now substitute back that $v=y / x$. We also take the positive absolute value (all the terms are to even powers)

$$
\ln \left(2 y^{2} x^{2}+4 x^{4}\right)=4 C, \quad 2 y^{2} x^{2}+4 x^{4}=D, \quad y^{2}=\frac{D}{2 x^{2}}-2 x^{2} .
$$

Solving, we have $y= \pm \sqrt{\frac{D}{2 x^{2}}-2 x^{2}}$ where the initial condition this time gives us that $49=\frac{D}{8}-$ $8 \Longleftrightarrow D=8 \cdot 56$. But when we plug into the equation, and choose the negative square root from the intitial condition, we get the same answer,

$$
y=-\sqrt{\frac{56 \cdot 8}{2 x^{2}}-2 x^{2}}=-\sqrt{\frac{228}{x^{2}}-2 x^{2}}
$$

b) The issue of domain arises from the square root. We need that $\frac{228}{x^{2}}-2 x^{2} \geq 0$ so equivalently we need $228 \geq 2 x^{4}$. This gives $114 \geq x^{4}$, so $\quad x \leq(114)^{1 / 4} \approx 3.26$. This means $x_{F}=114^{1 / 4} \approx 3.26$. In other words, the interval of validity is $\left(0,(114)^{0.25}\right)$.

Problem 3. 10pts

a) What is the general solution for $2 y^{\prime \prime}+y^{\prime}+y=0$?
b) Solve $6 y^{\prime \prime}+3 y^{\prime}+3 y=0$ with initial conditions $y(0)=1, y^{\prime}(0)=-2$.

Solution. a) First, we assume that $y=e^{r x}$ for the characteristic/auxiliary equation,

$$
2 r^{2}+r+1=0, \quad r=\frac{-1 \pm \sqrt{1-8}}{4}=\frac{-1 \pm i \sqrt{7}}{4}
$$

where you would use the quadratic formula as above, or may notice that for

$$
2 r^{2}+r+1=2\left(r^{2}+\frac{r}{2}+\frac{1}{2}\right)=2\left(r+\frac{1}{4}\right)^{2}+\frac{7}{8}=0, \quad\left(r+\frac{1}{4}\right)^{2}+\frac{7}{16}=0, \quad r=-\frac{1}{4}+\frac{i \sqrt{7}}{4} .
$$

Either way since our roots are $r=\frac{-1 \pm i \sqrt{7}}{4}$ are complex, the general solution is

$$
y(x)=e^{-x / 4}\left(A \cos \left(\frac{\sqrt{7}}{4} x\right)+B \sin \left(\frac{\sqrt{7}}{4} x\right)\right) .
$$

b) Notice that if we just divide by 3 , we have $6 y^{\prime \prime}+3 y^{\prime}+3 y=0 \Longleftrightarrow 2 y^{\prime \prime}+y^{\prime}+y=0$, so the general solution for this ODE is the one from part (a). We just have to solve for A, B from the initial conditions. First,

$$
y(0)=1: \quad 1=e^{0}(A), \quad A=1 .
$$

Second, we now need y^{\prime}, in which (plug in $A=1$)
$y^{\prime}(x)=-\frac{1}{4} e^{-x / 4}\left(\cos \left(\frac{\sqrt{7}}{4} x\right)+B \sin \left(\frac{\sqrt{7}}{4} x\right)\right)+e^{-x / 4}\left(-\frac{\sqrt{7}}{4} \sin \left(\frac{\sqrt{7}}{4} x\right)+\frac{B \sqrt{7}}{4} \cos \left(\frac{\sqrt{7}}{4} x\right)\right)$
where now,

$$
y^{\prime}(0)=-2: \quad-2=-\frac{1}{4}+\frac{B \sqrt{7}}{4}, \quad B=\frac{-7}{4} \cdot \frac{4}{\sqrt{7}}=-\sqrt{7} .
$$

Thus, with $A=1, B=-\sqrt{7}$, we have

$$
y(x)=e^{-x / 4}\left(\cos \left(\frac{\sqrt{7}}{4} x\right)-\sqrt{7} \sin \left(\frac{\sqrt{7}}{4} x\right)\right)
$$

