Math 3D Quiz 1 Afternoon - January 24th Please put name on front \& ID on back for redistribution!

Show all of your work. *There is a question on the back side.*

1. Consider the following ODE with initial condition: $x^{\prime}=\frac{e^{-t^{2}}}{x}$ and $x(0)=-2$.
(a) [3pts] Prove that this has a unique solution. (Hint: Section 1.2 material).

Proof. We need to check Picard's Theroem. Here,

$$
f(t, x)=\frac{e^{-t^{2}}}{x}, \quad f_{x}(t, x)=-\frac{e^{-t^{2}}}{x^{2}}, \quad \text { and } \quad\left(t_{0}, x_{0}\right)=(0,2)
$$

- f is continuous as long as x_{0} is away from 0 . It is also fine for any t. Since $x_{0}=2$, this f is continuous near the initial condition.
- f_{x} exists and is also continuous as long as we are away from $x_{0}=0$ so similarly, f_{x} exists and is continuous near the initial condition.
Since the assumptions of Picard's Theorem are satisfied, we conclude there exists a solution, and that it is unique by Picard's Theorem.
(b) [7pts] Find the exact solution for x. Don't worry about the domain of definition for this problem. You may leave a definite integral in the answer.

Solution. Separating, and using Leibniz notation, we have that

$$
x d x=e^{-t^{2}} d t \Longrightarrow \int x d x=\int e^{-t^{2}} d t .
$$

This gives us

$$
\frac{x^{2}}{2}=C+\int e^{-t^{2}} d t
$$

We cannot find an antiderivative to $e^{-t^{2}}$ so we have to make it a definite integral,

$$
x^{2}=\hat{C}+2 \int_{0}^{t} e^{-s^{2}} d s
$$

The initial condition implies

$$
(-2)^{2}=\hat{C}+2 \int_{0}^{0} e^{-s^{2}} d s \Longleftrightarrow 4=\hat{C}+0 \Longleftrightarrow \hat{C}=4 .
$$

Therefore we have

$$
x^{2}=4+2 \int_{0}^{t} e^{-s^{2}} d s
$$

Solving for x, we read

$$
x= \pm \sqrt{4+2 \int_{0}^{t} e^{-s^{2}} d s}
$$

where since $x(0)=-2$, we take the negative branch,

$$
x=-\sqrt{4+2 \int_{0}^{t} e^{-s^{2}} d s}
$$

2. (a) [7pts] Find the general solution to the differential equation $x y^{\prime}+y=x \sin \left(x^{2}\right)$.

Solution. First, this is an integrating factor problem. Dividing out by x first (we then note $x \neq 0$),

$$
y^{\prime}+\frac{1}{x} y=\sin \left(x^{2}\right) .
$$

The integrating factor is thus

$$
R(x)=e^{\int \frac{1}{x} d x}=e^{\ln |x|}=|x| .
$$

Note: It does not matter which branch of absolute value we take for $R(x)$, because we multiply this to both sides! For instance, when we multiply to both sides, it is either

$$
x\left(y^{\prime}+y\right)=x \sin \left(x^{2}\right)
$$

or

$$
-x\left(y^{\prime}+y\right)=-x \sin \left(x^{2}\right)
$$

which are the same thing. Now, knowing that the integrating factor induces a perfect derivative from product rule, (or, you may have seen it immediately from starting the problem), we have that

$$
\frac{d}{d x}[x y]=x \sin \left(x^{2}\right) .
$$

Integrating both sides,

$$
x y=\int x \sin \left(x^{2}\right) d x
$$

where the right side is computed with a u-sub of $u=x^{2}, d u=2 x d x$:

$$
\int x \sin \left(x^{2}\right) d x=\int \frac{\sin u}{2} d u=-\frac{1}{2} \cos (u)+C=-\frac{\cos \left(x^{2}\right)}{2}+C .
$$

This means that

$$
y=\frac{C}{x}-\frac{\cos \left(x^{2}\right)}{2 x}
$$

is our general solution.
(b) $[3 \mathrm{pts}]$ Find the exact solution if we are given the initial condition $y(\sqrt{\pi / 2})=0$.

Remember to include the domain of validity. (You should always do this without being asked).
Solution. From the initial condition, we have

$$
0=\frac{C}{\sqrt{\pi / 2}}-\frac{\cos (\pi / 2)}{2 \sqrt{\pi / 2}} \Longleftrightarrow C=0
$$

Also, since we had from part (a) that $x \neq 0$, this implies our domain is either $(0, \infty)$ or $(-\infty, 0)$. Since the initial condition is on the positive side, we take $(0, \infty)$ which is the same as saying $x>0$. Thus, our exact solution is

$$
y=-\frac{\cos \left(x^{2}\right)}{2 x}, \quad x \in(0, \infty) .
$$

