Math 3D Quiz 1 Morning - January 24th Please put name on front \& ID on back for redistribution!

Show all of your work. *There is a question on the back side.*

1. Consider the following ODE with initial condition: $x^{2} y^{\prime}=y-x y$ and $y(-1)=1$.
(a) $[3 \mathrm{pts}]$ Prove that this ODE has a unique solution. (Hint: Section 1.2 material).

Proof. First, rewrite it as $y^{\prime}=\frac{1-x}{x^{2}} y$.
We need to check Picard's Theroem. Here,

$$
f(x, y)=\frac{(1-x)}{x^{2}} y, \quad f_{y}(x, y)=\frac{1-x}{x^{2}}, \quad \text { and } \quad\left(x_{0}, y_{0}\right)=(-1,1) .
$$

- f is continuous as long as x is away from 0 . It is fine for any y value. Since $x_{0}=-1, f$ is continuous near the initial condition so this part of Picard's Theorem is satisfied.
- f_{x} exists and is also continuous as long as we are away from $x=0$ so similarly, f_{x} exists and is continuous near the initial condition.
Since the assumptions of Picard's Theorem are satisfied, we conclude there exists a solution, and that it is unique by Picard's Theorem.
(b) $[7 \mathrm{pts}]$ Find the exact solution for y. Reminder: Address what the domain of validity is.

Solution. From (a) how we wrote $y^{\prime}=\frac{1-x}{x^{2}} y$, we separate and integrate. With Leibniz notation,

$$
\frac{d y}{y}=\left(\frac{1}{x^{2}}-\frac{1}{x}\right) d x \Longrightarrow \ln |y|=-\frac{1}{x}-\ln |x|+C . \quad \text { Note }: x \neq 0, y \neq 0 .
$$

We can actually solve for C now, to obtain

$$
\ln |1|=1-\ln |-1|+C \Longleftrightarrow C=-1 .
$$

Also from the initial condition, we choose the positive branch of absolute value for $|y|$ but negative branch for $|x|$, in that

$$
\ln (y)=-\frac{1}{x}-\ln (-x)-1 \stackrel{e x p}{\Longrightarrow} y=e^{-\frac{1}{x}-\ln (-x)-1} .
$$

Writing this a little cleaner, and including the domain of validity, we have that

$$
y=-\frac{1}{x} e^{-1-\frac{1}{x}}, \quad x \in(-\infty, 0) \quad(\text { or } x<0) .
$$

Why $x<0$: We note that we can't have $x=0$ so our domain is either $(-\infty, 0)$ or $(0, \infty)$. Since our initial condition $x=-1$ lies in $(-\infty, 0)$, our domain of validity is $(-\infty, 0)$ which is the same as saying $x<0$.
2. (a) [9pts] A twist on Newton's law of cooling. Find the general solution to

$$
\frac{d T}{d t}=A_{0} \cos (t)-T
$$

Conceptually, this is like if the ambient temperature is oscillating, say, between night and day.
Solution. First, this cannot be separated so we have to use an integration factor. Rewriting,

$$
\frac{d T}{d t}+T=A_{0} \cos (t) \Longrightarrow R(t)=e^{\int 1 d t}=e^{t}
$$

Using this, we multiply $R(x)$ to both sides and recall / see it induces a product rule on the left side,

$$
e^{t} T^{\prime}+e^{t} T=A_{0} e^{t} \cos (t) \Longleftrightarrow \frac{d}{d t}\left[e^{t} \cdot T\right]=A_{0} e^{t} \cos (t)
$$

We integrate both sides now with respect to $d t$, and we see we have a hard integral to compute:

$$
e^{t} \cdot T=A_{0} \int e^{t} \cos (t) d t
$$

This requires two integration by parts. Set $u=\cos t$ and $d v=e^{t}$ so $d u=-\sin t d t$ and $v=e^{t}$,

$$
\int e^{t} \cos (t) d t=C+e^{t} \cos t-\int-e^{t} \sin t d t
$$

where we integrate by parts again, $u=\sin t, d v=e^{t}$ so $d u=\cos t d t$ and $v=e^{t}$,

$$
\int e^{t} \cos (t) d t=C+e^{t} \cos t+e^{t} \sin t-\int e^{t} \cos t d t
$$

so we see that

$$
2 \int e^{t} \cos t d t=C+e^{t}(\cos t+\sin t) \Longleftrightarrow \int e^{t} \cos t d t=\frac{e^{t}}{2}(\cos t+\sin t)+\hat{C}
$$

Therefore,

$$
e^{t} \cdot T=\frac{A_{0}}{2} e^{t}(\cos t+\sin t)+\hat{C}
$$

so our general solution is

$$
T(t)=\frac{A_{0}}{2}(\cos t+\sin t)+\hat{C} e^{-t} .
$$

For good measure, you may check that T indeed satisfies the differential equation :)
(b) [1pt] If we imposed an initial condition, we would determine the constant in the general solution in (a) and find an exact solution. But, in the long term, as $t \rightarrow \infty$, will the initial condition make much of a difference? Explain why or why not.
Solution. It will not make a difference in the long term. The initial condition will ultimately determine what the constant \hat{C} is. But, $\hat{C} e^{-t}$ is going to go to zero as $t \rightarrow \infty$, that is $\lim _{t \rightarrow \infty} \hat{C} e^{-t} \rightarrow 0$ so it doesn't do anything in the long term.

