Math 3D PreQuiz - January 11th Please put name on front \& ID on back for redistribution!

Show all of your work. *There is room and a question on the back side.*

Problem 1

a) Compute the indefinite integral $\int(\ln x)^{2} d x$.
b) What does $\int_{0}^{1}(\ln x)^{2} d x$ equal based on (a)?

Solution. First let $u=\ln x$, so $d u=d x / x$. Alternatively, this is like letting $x=e^{t}$ so that $d x=e^{t} d t$. With both perspectives,

$$
\int(\ln x)^{2} d x=\int u^{2} \cdot e^{u} d u
$$

or

$$
\int(\ln x)^{2} d x=\int t^{2} \cdot e^{t} d t
$$

To proceed, we need to integrate by parts, let $u=t^{2}, d v=e^{t} d t$ so that

$$
=t^{2} e^{t}-\int 2 t e^{t} d t
$$

and do it one more time with $u=2 t$ and $d v=e^{t} d t$ again,

$$
\begin{gathered}
=t^{2} e^{t}-2 t e^{t}+\int 2 e^{t} d t \\
=e^{t}\left(t^{2}-2 t+2\right)+C
\end{gathered}
$$

We then have to resubstitute that $x=e^{t} \Longleftrightarrow t=\ln x$ to get

$$
\int(\ln x)^{n} d x=x\left((\ln x)^{2}-2 \ln x+2\right)+C
$$

and moreover, if we made this a definite integral,

$$
\int_{0}^{1}(\ln x)^{2} d x=2 .
$$

For the upper bound, we can just plug in $x=1$ to get 2 . But, in the lower bound, $\operatorname{since} \ln (0)$ is undefined, formally we have to take $\lim _{x \rightarrow 0}$ for the lower bound. Since x goes to 0 faster than $\ln x$ goes to $-\infty$, the lower limit of the integral goes to 0 . (Don't worry too much about this, though).

Thanks for this alternate / easier solution mentioned! :
We can actually just let $u=(\ln x)^{2}$ right away. Then $d v=d x$. Using this, we get that $d u=\frac{2 \ln x}{x} d x$ and $v=x$. So,

$$
\int(\ln x)^{2} d x=x(\ln x)^{2}-\int 2 \ln x d x .
$$

To integrate natural log, we have to do another integral by parts letting $u=\ln x$ and $d v=d x$ and we will wind up with the same answer.

Problem 2

a) Without solving for the partial fractions coefficients, what would be the general partial fraction decomposition of a function like

$$
\frac{p x^{3}+q x-r}{(x-1)^{3}(x-3)\left(x^{2}+5\right)} \quad ?
$$

(Do not solve for the coefficients).
Answer:

$$
\frac{a x^{3}+b x-c}{(x-1)^{3}(x-3)\left(x^{2}+5\right)}=\frac{A_{1}}{x-1}+\frac{A_{2}}{(x-1)^{2}}+\frac{A_{3}}{(x-1)^{3}}+\frac{A_{4}}{(x-3)}+\frac{A_{5} x+A_{6}}{x^{2}+5}
$$

b) Compute

$$
\int \frac{2 x^{2}-x+4}{x^{3}+4 x} d x .
$$

Solution. First this is a partial fractions problem. Notably the polynomial numerator is a smaller degree than the bottom polynomial. Thus, we first factor the bottom,

$$
x^{3}+4 x=x\left(x^{2}+4\right) \text {. }
$$

This means that our partial fraction decomposition goes as

$$
\frac{2 x^{2}-x+4}{x^{3}+4 x}=\frac{A}{x}+\frac{B x+C}{x^{2}+4} .
$$

To solve for A, B, C, first find a common denominator, multiply by $x^{3}+4 x=x\left(x^{2}+4\right)$ everywhere,

$$
2 x^{2}-x+4=A\left(x^{2}+4\right)+x(B x+C) .
$$

There's a couple ways to do this.
1st Way: Decompose the equation into powers of x. For instance,

$$
\begin{cases}x^{2}: & 2=A+B \\ x: & -1=C \\ 1: & 4=4 A\end{cases}
$$

This way ends up being easier, as we can read off $A=1, C=-1$ so that plugging in for the x^{2} equation, $B=1$ then. So,

$$
\frac{2 x^{2}-x+4}{x^{3}+4 x}=\frac{1}{x}+\frac{x-1}{x^{2}+4} .
$$

2nd Way: Often the partial fractions are linear roots, so we can plug in those roots and isolate some constants. Here for example, $x=0$ is a root, so if we plug in $x=0$, we get

$$
2\left(0^{2}\right)-0+4=A\left(0^{2}+4\right)+0(B(0)+C) \Longleftrightarrow 4=4 A \Longleftrightarrow A=1
$$

However to solve for B and C, we have to go back to solving for the coefficients of x^{2} and x as in the 1st Way.

Regardless, we'll get from partial fractions,

$$
\int \frac{1}{x} d x+\int \frac{x-1}{x^{2}+4} d x=C+\ln |x|+\int \frac{x}{x^{2}+4} d x-\int \frac{1}{x^{2}+4} d x .
$$

For the middle term, let $u=x^{2}+4, d u=2 x d x$ and for the last term, we let $x=2 \tan \theta$, $d x=2 \sec ^{2} \theta d \theta$ to obtain

$$
=C+\ln |x|+\frac{1}{2} \ln \left|x^{2}+4\right|-\int \frac{2 \sec ^{2} \theta d \theta}{4 \sec ^{2} \theta}
$$

where we used the identity $4\left(\tan ^{2} \theta+1\right)=4 \sec ^{2} \theta$. The last term becomes just $\int \frac{1}{2} d \theta=\theta / 2$ where since $x=2 \tan \theta$, we see that $\theta=\arctan (x / 2)$ so finally,

$$
\int \frac{2 x^{2}-x+4}{x^{3}+4 x} d x=C+\ln |x|+\frac{1}{2} \ln \left(x^{2}+4\right)-\frac{1}{2} \arctan (x / 2)
$$

Problem 3

Find the eigenvalues (with multiplicity) and the corresponding eigenvector bases for the matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 4 & 9 / 2 \\
0 & 0 & 1
\end{array}\right]
$$

Optional: We can diagonalize A by writing it as $A=P D P^{-1}$. What are the matrices P and D ? Solution. One trick is that the eigenvalues of an upper or lower triangular matrix lie on its diagonal so we have $\lambda=1$ (mult. 2) and $\lambda=4$. Formally, we compute the characteristic polynomial

$$
\begin{gathered}
c_{A}(\lambda)=\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{ccc}
1-\lambda & 2 & 3 \\
0 & 4-\lambda & 9 / 2 \\
0 & 0 & 1-\lambda
\end{array}\right]=(1-\lambda) \cdot \operatorname{det}\left[\begin{array}{cc}
4-\lambda & 9 / 2 \\
0 & 1-\lambda
\end{array}\right] \\
c_{A}(\lambda)=(1-\lambda)^{2}(4-\lambda) \Longleftrightarrow \lambda=4,1(\text { mult.2 }) .
\end{gathered}
$$

The eigenvectors are found by computing / solving for $(A-\lambda I) \vec{v}=0$. So,

$$
\lambda=4,(A-4 I) \vec{v}=0:\left[\begin{array}{ccccc}
-3 & 2 & 3 & \vdots & 0 \\
0 & 0 & 9 / 2 & \vdots & 0 \\
0 & 0 & -3 & \vdots & 0
\end{array}\right] \xrightarrow{R_{3}=-R_{3} / 3}\left[\begin{array}{ccccc}
-3 & 2 & 3 & \vdots & 0 \\
0 & 0 & 9 / 2 & \vdots & 0 \\
0 & 0 & 1 & \vdots & 0
\end{array}\right] \xrightarrow{3 r d \operatorname{Col}}\left[\begin{array}{ccccc}
-3 & 2 & 0 & \vdots & 0 \\
0 & 0 & 0 & \vdots & 0 \\
0 & 0 & 1 & \vdots & 0
\end{array}\right]
$$

so the solution satisfies $-3 v_{1}=-2 v_{2} \Longleftrightarrow v_{1}=\frac{2}{3} v_{2}$ and $v_{3}=0$ so the eigenvector is of the form

$$
\vec{v}=v_{2}\left[\begin{array}{c}
2 / 3 \\
1 \\
0
\end{array}\right] \text { so we can take the vector }\left\{\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right]\right\} \text { as the basis for the eigenspace of } \lambda=4
$$

Checking, that $A \vec{v}=4 \cdot \vec{v}$,

$$
A \vec{v}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 4 & 9 / 2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right]=\left[\begin{array}{c}
8 \\
12 \\
0
\end{array}\right]=4 \cdot\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right]
$$

Now for the other eigenvalue,

$$
\lambda=1,(A-I) \vec{v}=0:\left[\begin{array}{ccccc}
0 & 2 & 3 & \vdots & 0 \\
0 & 3 & 9 / 2 & \vdots & 0 \\
0 & 0 & 0 & \vdots & 0
\end{array}\right] \xrightarrow{R_{2}=R_{2}-\frac{3}{2} R_{1}}\left[\begin{array}{ccccc}
0 & 2 & 3 & \vdots & 0 \\
0 & 0 & 0 & \vdots & 0 \\
0 & 0 & 0 & \vdots & 0
\end{array}\right], \begin{gathered}
v_{1}=\text { free } \\
2 v_{2}=-3 v_{3} \\
v_{3}=\text { free } .
\end{gathered}
$$

so we infer that the eigenspace consists of vectors of the form

$$
\vec{v}=\left[\begin{array}{c}
v_{1} \\
-\frac{3}{2} v_{3} \\
v_{3}
\end{array}\right]=v_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+v_{3}\left[\begin{array}{c}
0 \\
-3 \\
2
\end{array}\right]
$$

where we see we have two distinct eigenvectors, so our eigenbasis for $\lambda=1$ is $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -3 \\ 2\end{array}\right]\right\}$. Checking, that $A \vec{v}=1 \cdot \vec{v}$ now,

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 4 & 9 / 2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 4 & 9 / 2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
-3 \\
2
\end{array}\right]=\left[\begin{array}{c}
0 \\
-3 \\
2
\end{array}\right] .
$$

Optional Part:
Lastly, to diagonalize A, we have that the matrices are respectively (and the order of collumns matters as the collumns of P are the corresponding eigenvectors to the eigenvalues)

$$
D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right], \quad P=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & -3 & 3 \\
0 & 2 & 0
\end{array}\right] .
$$

If we needed P^{-1} just to recall how to do it from Linear Algebra, consider the matrix

$$
[P \vdots I]=\left[\begin{array}{ccccccc}
1 & 0 & 2 & \vdots & 1 & 0 & 0 \\
0 & -3 & 3 & \vdots & 0 & 1 & 0 \\
0 & 2 & 0 & \vdots & 0 & 0 & 1
\end{array}\right]
$$

and row reduce it until the left side is identity. The right side is then P^{-1}. In other words, row reduce it to the form

$$
\left[I \vdots P^{-1}\right] .
$$

