Math 117, DyNamical Systems Sample Midterm

Problem 1.

Let $f:[0,1] \rightarrow[0,1]$ be a homeomorphism (i.e. f is a continuous bijection and f^{-1} is also continuous) such that $f(0)=1$ and $f(1)=0$. Prove that f has exactly one fixed point.

Problem 2.

Suppose that each of the rotations of the circle $R_{\alpha}: S^{1} \rightarrow S^{1}$ and $R_{\beta}: S^{1} \rightarrow S^{1}$ is transitive. Does it imply that their product $f=R_{\alpha} \times R_{\beta}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ is also transitive? Explain your answer.

Problem 3.

Prove that $\sup _{n \in \mathbb{Z}}(\sin n)=1$.

Problem 4.

Compute the topological entropy of the endomorphism of the torus

$$
f: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}, \quad f(x, y)=(3 x, 5 y)(\bmod 1)
$$

Problem 5.

Show that composition of two orientation-reversing homeomorphisms of the circle is an orientationpreserving homeomorphism.

