Math 117, DyNAmical Systems Sample Final

Problem 1.

Give an example of a topological dynamical system $f: X \rightarrow X$ such that
a) f is minimal but not topologically mixing;
b) f is topologically mixing but not minimal.

Problem 2.

TRUE OR FALSE: If $f, g: S^{1} \rightarrow S^{1}$ are homeomorphisms of the circle with rotation numbers $\rho(f)=\alpha$ and $\rho(g)=\beta$ then $\rho(f \circ g)=\alpha+\beta$. Prove or give a counterexample.

Problem 3.

Show that the flow in \mathbb{R}^{2} given (in polar coordinates) by

$$
\left\{\begin{array}{l}
\dot{r}=\frac{r(1-r)}{1+r^{4}} \\
\dot{\theta}=1
\end{array}\right.
$$

has a periodic orbit. Is this periodic orbit attracting or repelling? Explain your answer.

Problem 4.

Consider the topological Markov chain given by the matrix $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$. How many periodic point of (smallest) period 4 does it have?

Problem 5.

Consider the topological Markov chain given by the matrix $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$. Let P_{n} be the number of its periodic orbits of (not necessarily smallest) period n. Prove that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log P_{n}=\log \frac{1+\sqrt{5}}{2} .
$$

