Problem 1.

Consider the map $f:[0,1] \rightarrow [0,1]$, $f(x) = \begin{cases} 1/2 + x, & \text{if } x \in [0,1/2]; \\ 2 - 2x, & \text{if } x \in [1/2,1]. \end{cases}$ Periodic points of what periods does this map have?

Problem 2.

Suppose a homeomorphism of the circle $f : S^1 \to S^1$ has a periodic point of period 3. Can it have a periodic point of period 7? Explain your answer.

Problem 3.

Determine whether there exists a homeomorphism f of the circle such that $f \circ E_2 = E_4 \circ f$. Explain your answer. (Here $E_m : S^1 \to S^1$, $E_m(x) = mx \pmod{1}$.)

Problem 4.

Consider the set *C* of all points of the unit interval which have a binary representation without two successive zeros. Prove that *C* is an uncountable set invariant under the map $T : [0,1) \rightarrow [0,1)$, $T(x) = 2x \pmod{1}$.

Problem 5.

Consider the map $f : \mathbb{T}^2 \to \mathbb{T}^2$, $T(x, y) = (x + \alpha, x + y) \pmod{1}$, where $\alpha \notin \mathbb{Q}$. Is it transitive? topologically mixing?