Math 117, Dynamical Systems Sample Midterm

Problem 1.

Consider a map $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{3}-3 x^{2}+3 x$
a) Find all the fixed points of f and determine which of them are attracting or repelling;
b) Describe the set $B=\left\{x \in \mathbb{R} \mid\left\{f^{n}(x)\right\}_{n \in \mathbb{N}}\right.$ is bounded $\}$?

Problem 2.

Find $\sup _{t \in \mathbb{R}}(\cos t+\sin \sqrt{3} t)$.

Problem 3.

Consider the following map of the torus $\mathbb{T}^{2}=\mathbb{R}^{2} \backslash \mathbb{Z}^{2}$:

$$
f: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}, f(x, y)=(2 x, 3 y)(\bmod 1)
$$

Prove that f is topologically mixing and periodic points of f are dense in \mathbb{T}^{2}. Find the the number of its periodic points of (not necessarily smallest) period n for each $n \in \mathbb{N}$.

Problem 4.

Give an example of a topological dynamical system $f: X \rightarrow X$ such that
a) f is minimal but not topologically mixing;
b) f is topologically mixing but not minimal.

Problem 5.

Consider the topological Markov chain given by the matrix $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$. Let P_{n} be the number of its periodic points of (not necessarily smallest) period n. Prove that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log P_{n}=\log \frac{1+\sqrt{5}}{2}
$$

