Final Sample

Problem 1.

Consider the map $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=\frac{x^{3}}{3}-\frac{3 x^{2}}{2}+2 x+\frac{1}{6}$.
a) Check that $x=1$ is a fixed point of f. Is it attracting, repelling, or neutral?
b) Find other fixed points of f, and determine whether they are attracting, repelling, or neutral.

Problem 2.

Consider the topological Markov chain given by the matrix

$$
A=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

Find the number of periodic points of (not necessarily smallest) period m for each $m \in \mathbb{N}$.

Problem 3.

Let $S \subseteq \mathbb{R}^{2}$ be a compact subset of the plane such that

$$
S=f_{1}(S) \cup f_{2}(S) \cup f_{3}(S)
$$

where the contractions f_{1}, f_{2}, f_{3} are defined by

$$
f_{1}(x, y)=\left(\frac{x}{5}, \frac{y}{5}\right), f_{2}(x, y)=\left(\frac{x}{5}+1, \frac{y}{5}\right), f_{3}(x, y)=\left(\frac{x}{5}, \frac{y}{5}+1\right) .
$$

Find the box counting dimension of S.

Problem 4.

a) Is it possible for a continuous map $f: \mathbb{R} \rightarrow \mathbb{R}$ to have a periodic point of (smallest) period 7 , but not a periodic point of (smallest) period 16 ?
b) Is it possible for a continuous map $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ to have a periodic point of (smallest) period 7 , but not a periodic point of (smallest) period 16?

Problem 5.
Consider the family of maps $f_{a}: \mathbb{R} \rightarrow \mathbb{R}, f_{a}(x)=\frac{x^{3}}{3}-\frac{3 x^{2}}{2}+2 x+a$. Show that for any value of the parameter $a \in \mathbb{R}$ the map f_{a} cannot have more than two attracting periodic orbits.

