## Dynamical Systems, Math 117, HW\#5

Exercises 11.2, 11.4, 11.6, 11.7, and the following problems:

## Problem 1.

Consider the map $f:[0,1] \rightarrow[0,1], f(x)= \begin{cases}1 / 2+x, & \text { if } x \in[0,1 / 2] \text {; } \\ 2-2 x, & \text { if } x \in[1 / 2,1] .\end{cases}$
Periodic points of what periods does this map have?

## Problem 2.

Let $\sigma_{A}: \Sigma_{A} \rightarrow \Sigma_{A}$ be a topological Markov chain with the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Find $\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(\# \operatorname{Per}_{n}\left(\sigma_{A}\right)\right)$, where $\# \operatorname{Per}_{n}\left(\sigma_{A}\right)$ is the number of periodic points of (not necessarily minimal) period $n$.

## Problem 3.

a) Is it possible to find a continuous map $f:[0,1] \rightarrow[0,1]$ such that $f^{2}$ has a periodic point of prime period 20, but $f^{3}$ has no periodic points of prime period 34 ?
b) Is it possible to find a continuous map $f:[0,1] \rightarrow[0,1]$ such that $f^{2}$ has a periodic point of prime period 15 , but $f^{3}$ has no periodic points of prime period 28 ?

