## Math 117, Dynamical Systems Sample Final

## Problem 1.

Find all the fixed points of the map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, T(x, y, z)=(2 x y-z, x, y)$.

## Problem 2.

For each of the following statements determine whether it is true or false (explain your answer).
a) If a continuous map $f: S^{1} \rightarrow S^{1}$ has a periodic point of prime period 3, then it has periodic points of all prime periods.
b) If a continuous map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ has a periodic point of prime period 3, then it has periodic points of all prime periods.
c) If a continuous map $f: S^{1} \rightarrow S^{1}$ has a fixed point and a periodic point of prime period 3 , then it has periodic point of prime period 2 .

## Problem 3.

Consider a family of maps $G_{c}: \mathbb{C} \rightarrow \mathbb{C}, G_{c}(z)=z^{3}+c$. Show that if $|c|>2$, then $G_{c}^{n}(0) \rightarrow \infty$ as $n \rightarrow+\infty$. Can one replace the condition $|c|>2$ by the condition $|c|>1.5$ in this statement?

## Problem 4.

Consider the map $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=\frac{x^{3}}{3}-\frac{x^{2}}{2}$.
a) Show that $S f<0$. Find the number of critical points of $f$. Conclude that $f$ has at most 2 attracting periodic orbits.
b) Find all the attracting periodic orbits of $f$.

## Problem 5.

Let $C \subset[0,1]$ be the Cantor set generated by contractions

$$
\phi_{1}: x \mapsto \frac{x}{3}, \phi_{2}: x \mapsto \frac{x}{9}+\frac{1}{2}, \phi_{3}: x \mapsto \frac{x}{9}+\frac{8}{9} .
$$

Find its box counting dimension.

