Final Sample

Problem 1.

Consider the matrix $A=\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right)$.
a) Find eigenvalues of A;
b) Find eigenvectors of A;
c) Find an explicit formula for A^{N}.

Problem 2.
Prove that if $A \in M_{n \times n}$ is diagonalizable, then A^{3} is also diagonalizable. Does the converse statement hold?

Problem 3.

Let $A \in M_{n \times n}(\mathbb{R}), n \in \mathbb{N}$, be a matrix with the entries $A_{i j}=(-1)^{i+j}$. Find $\operatorname{det}(A)$.

Problem 4.
Let $p(t)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ be the characteristic polynomial of a matrix $A \in M_{3 \times 3}(\mathbb{R})$. Show that
a) $a_{3}=-1$;
b) $a_{0}=\operatorname{det}(A)$;
c) $a_{2}=\operatorname{Tr}(A)$.

Problem 5.

For each of the following statements answer whether it is true or false (explain your answer):

1) In $M_{n \times n}(\mathbb{R})$ the set of matrices with zero determinant is a subspace.
2) In $M_{n \times n}(\mathbb{R})$ the set of matrices with zero trace is a subspace.
3) In $M_{n \times n}(\mathbb{R})$ the set of diagonal matrices is a subspace.
4) In $M_{n \times n}(\mathbb{R})$ the set of diagonalizable matrices is a subspace.
5) In $M_{n \times n}(\mathbb{R})$ the set of matrices of rank one is a subspace.
