HW \#1 solutions

Problem 13 from Section 1.2.

No, V is not a vector space. Indeed, suppose it is, and $\left(z_{1}, z_{2}\right)$ is zero element in V, i.e. $\left(a_{1}, a_{2}\right)+$ $\left(z_{1}, z_{2}\right)=\left(a_{1}, a_{2}\right)$ for any $\left(a_{1}, a_{2}\right) \in V$. Take $\left(a_{1}, a_{2}\right)=(1,1)$. We get $z_{1}=0, z_{2}=1$. At the same time, if one takes $\left(a_{1}, a_{2}\right)=(0,0)$, then $\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right) \neq(0,1)$ for any $\left(b_{1}, b_{2}\right) \in V$, and therefore the element $(0,0)$ does not have an inverse one.

Problem 17 from Section 1.2.

No, V is not a vector space. Otherwise we would have $(a, 0)=1 \cdot(a, 0)=(1+0) \cdot(a, 0)=$ $1 \cdot(a, 0)+0 \cdot(a, 0)=(a, 0)+(a, 0)=(2 a, 0)$, and therefore $a=2 a$, or $a=0$ for any $a \in \mathbb{F}$. But for any field $1 \neq 0$.

Problem 18 from Section 1.2.

No, V is not a vector space. Notice that the addition is not commutative.

Problem 21 from Section 1.2.

The solution is straightforward.

Problem 10 from Section 1.3.

The fact that W_{1} is a subspace of \mathbb{F}^{n} is straightforward. The set W_{2} is not a subspace since it does not contain zero vector.

Problem 19 from Section 1.3.

If $W_{1} \subseteq W_{2}$ (or $W_{2} \subseteq W_{1}$) then $W_{1} \cup W_{2}=W_{2}$ (or $W_{1} \cup W_{2}=W_{1}$) and therefore must be a subspace of V. Suppose now that $W_{1} \cup W_{2}$ is a subspace of V, and at the same time there are vectors $v_{1} \in W_{1} \backslash W_{2}$ and $v_{2} \in W_{2} \backslash W_{1}$. Set $v_{1}+v_{2}=v_{3}$. Since $W_{1} \cup W_{2}$ is a subspace of V, $v_{3} \in W_{1} \cup W_{2}$, hence either $v_{3} \in W_{1}$, or $v_{3} \in W_{2}$. In the first case we have that $v_{2} \in W_{1}$, in the second case we have that $v_{1} \in W_{2}$. In either case we get a contradiction.

Problem 6 from Section 1.4.

The statement is incorrect. In the case of the field \mathbb{F} of characteristic 2 those vectors do not generate \mathbb{F}^{3}. Let us prove that in the case of the field \mathbb{F} of characteristic different from 2 (i.e. $1+1 \neq 0$) the statement holds. Denote $v_{1}=(1,1,0), v_{2}=(1,0,1), v_{3}=(0,1,1)$. It is enough to show that some linear combinations of v_{1}, v_{2}, v_{3} give the vectors $(1,0,0),(0,1,0)$, and $(0,0,1)$. But we can explicitly check that $(1,0,0)=\frac{1}{2}\left(v_{1}+v_{2}-v_{3}\right),(0,1,0)=\frac{1}{2}\left(v_{1}+v_{3}-v_{2}\right)$, and $(0,0,1)=\frac{1}{2}\left(v_{2}+v_{3}-v_{1}\right)$.

Problem 10 from Section 1.4.

Since the matrices M_{1}, M_{2}, M_{3} are symmetric, any linear combination is also symmetric. Therefore
$\operatorname{span}\left\{M_{1}, M_{2}, M_{3}\right\}$ is a subset of the space of symmetric matrices. At the same time if A is a symmetric matrix of the form $\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$, then $A=a M_{1}+c M_{2}+b M_{3}$, and therefore the set of symmetric matrices is contained in $\operatorname{span}\left\{M_{1}, M_{2}, M_{3}\right\}$.

Problem 12 from Section 1.4.

It was proven already that $\operatorname{span}\{W\}$ is a subspace, so if $W=\operatorname{span}\{W\}$, then W is a subspace. On the other hand, if $W \subseteq V$ is a subspace, then any linear combination of vectors from W is in W, and hence $\operatorname{span}\{W\} \subseteq W$. Since the inclusion $W \subseteq \operatorname{span}\{W\}$ always holds, we must have $W=\operatorname{span}\{W\}$.

Problem 2 from Section 1.5.

a) linearly dependent;
b) linearly independent;
c) linearly independent;
d) linearly dependent;
e) linearly dependent;
f) linearly independent;
g) linearly dependent;
h) linearly independent;
i) linearly independent;
j) linearly dependent.

Problem 10 from Section 1.5.

For example, $(1,0,0),(0,1,0)$, and $(1,1,0)$. Certainly, there are many other examples.
Problem 2 from Section 1.6.
a) Basis;
b) Not a basis;
c) Basis;
d) Basis;
e) Not a basis.

Problem 3 from Section 1.6.

a) Not a basis;
b) Basis;
c) Basis;
d) Basis;
e) Not a basis.

Problem 4 from Section 1.6.

No, three vectors cannot generate a four dimensional space.
Problem 12 from Section 1.6.

It is clear that $v+w \in \operatorname{span}\{u, v, w\}$ and $u+v+w \in \operatorname{span}\{u, v, w\}$, hence $\operatorname{span}\{u+v+w, v+$ $w, w\} \subseteq \operatorname{span}\{u, v, w\}$. Also, since $v=(v+w)-w$, and $u=(u+v+w)-(v+w)$, we have that $u, v, w \in \operatorname{span}\{u+v+w, v+w, w\}$, and hence $\operatorname{span}\{u, v, w\} \subseteq \operatorname{span}\{u+v+w, v+w, w\}$. This proves that $\operatorname{span}\{u+v+w, v+w, w\}=\operatorname{span}\{u, v, w\}$. If $\{u, v, w\}$ is a basis in V, then $V=\operatorname{span}\{u, v, w\}$ is a three dimensional vector space. Since $\{u+v+w, v+w, w\}$ is a generating set of three vectors in three dimensional space, it must be a basis.

