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HW+#1 solutions

Problem 13 from Section 1.2.

No, V is not a vector space. Indeed, suppose it is, and (z1, 22) is zero element in V, i.e. (a1, a2) +
(z1,22) = (a1,az2) for any (a1, a2) € V. Take (a1,a2) = (1,1). We get z; = 0, z2 = 1. At the same
time, if one takes (a1, a2) = (0,0), then (a1, ag) + (b1, b2) # (0, 1) for any (b1, b2) € V, and therefore
the element (0, 0) does not have an inverse one.

Problem 17 from Section 1.2.

No, V is not a vector space. Otherwise we would have (¢,0) = 1-(a,0) = (1 +0) - (a,0) =
1-(a,0)4+0-(a,0) = (a,0) + (a,0) = (2a,0), and therefore a = 2a, or a = 0 for any a € F. But for
any field 1 # 0.

Problem 18 from Section 1.2.

No, V is not a vector space. Notice that the addition is not commutative.

Problem 21 from Section 1.2.

The solution is straightforward.

Problem 10 from Section 1.3.

The fact that W is a subspace of " is straightforward. The set 5 is not a subspace since it does
not contain zero vector.

Problem 19 from Section 1.3.

If W7, € Wy (or Wy C Wy) then W7 U Wy = Wy (or Wi U Wo = W1) and therefore must be a
subspace of V. Suppose now that W; U W5 is a subspace of V, and at the same time there are
vectors v € Wi\Wa and va € W)\Wj. Set v1 + v2 = v3. Since Wi U Wy is a subspace of V,
vz € Wi U Wy, hence either v3 € Wy, or v3 € Ws. In the first case we have that v € Wy, in the
second case we have that v; € Ws. In either case we get a contradiction.

Problem 6 from Section 1.4.

The statement is incorrect. In the case of the field F of characteristic 2 those vectors do not generate
3. Let us prove that in the case of the field F of characteristic different from 2 (i.e. 1 + 1 # 0) the
statement holds. Denote v; = (1,1,0),v2 = (1,0,1),v3 = (0,1, 1). It is enough to show that some
linear combinations of vy, v2, v3 give the vectors (1,0, 0), (0,1,0), and (0, 0, 1). But we can explicitly
check that (1, 0, 0) = %(Ul + Vo — Ug), (0, 1,0) = %(Ul + v3 — UQ), and (0,0, 1) = %(Ug + v3 — Ul).

Problem 10 from Section 1.4.

Since the matrices M, M>, M3 are symmetric, any linear combination is also symmetric. Therefore



span{My, Ma, M3} is a subset of the space of symmetric matrices. At the same time if A is a

b [; ), then A = aM; + cMs + bM3, and therefore the set of

symmetric matrices is contained in span{M;, Ma, M3}.

symmetric matrix of the form < “

Problem 12 from Section 1.4.

It was proven already that span{W} is a subspace, so if W = span{W}, then W is a subspace.
On the other hand, if W C V is a subspace, then any linear combination of vectors from W is in
W, and hence span{W} C W. Since the inclusion W C span{W} always holds, we must have
W = span{W}.

Problem 2 from Section 1.5.

a) linearly dependent;
b) linearly independent;
¢) linearly independent;
d) linearly dependent;
e) linearly dependent;

f) linearly independent;
g) linearly dependent;
h) linearly independent;
i) linearly independent;
j) linearly dependent.

Problem 10 from Section 1.5.

For example, (1,0,0), (0,1,0), and (1, 1,0). Certainly, there are many other examples.

Problem 2 from Section 1.6.

a) Basis;
b) Not a basis;
¢) Basis;
d) Basis;
e) Not a basis.

Problem 3 from Section 1.6.

a) Not a basis;
b) Basis;
¢) Basis;
d) Basis;
e) Not a basis.

Problem 4 from Section 1.6.

No, three vectors cannot generate a four dimensional space.

Problem 12 from Section 1.6.




It is clear that v + w € span{u,v,w} and u +v + w € span{u,v,w}, hence span{u + v + w,v +
w,w} C span{u,v,w}. Also, since v = (v+ w) —w, and v = (u + v + w) — (v + w), we have
that u,v,w € span{u + v + w,v + w, w}, and hence span{u,v,w} C span{u + v+ w,v + w,w}.
This proves that span{u + v + w,v + w,w} = span{u,v,w}. If {u,v,w} is a basis in V, then
V' = span{u,v,w} is a three dimensional vector space. Since {u + v + w, v + w, w} is a generating
set of three vectors in three dimensional space, it must be a basis.



