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HW#1 solutions

Problem 13 from Section 1.2.

No, V is not a vector space. Indeed, suppose it is, and (z1, z2) is zero element in V , i.e. (a1, a2) +
(z1, z2) = (a1, a2) for any (a1, a2) ∈ V . Take (a1, a2) = (1, 1). We get z1 = 0, z2 = 1. At the same
time, if one takes (a1, a2) = (0, 0), then (a1, a2) + (b1, b2) 6= (0, 1) for any (b1, b2) ∈ V , and therefore
the element (0, 0) does not have an inverse one.

Problem 17 from Section 1.2.

No, V is not a vector space. Otherwise we would have (a, 0) = 1 · (a, 0) = (1 + 0) · (a, 0) =
1 · (a, 0) + 0 · (a, 0) = (a, 0) + (a, 0) = (2a, 0), and therefore a = 2a, or a = 0 for any a ∈ F. But for
any field 1 6= 0.

Problem 18 from Section 1.2.

No, V is not a vector space. Notice that the addition is not commutative.

Problem 21 from Section 1.2.

The solution is straightforward.

Problem 10 from Section 1.3.

The fact that W1 is a subspace of Fn is straightforward. The set W2 is not a subspace since it does
not contain zero vector.

Problem 19 from Section 1.3.

If W1 ⊆ W2 (or W2 ⊆ W1) then W1 ∪ W2 = W2 (or W1 ∪ W2 = W1) and therefore must be a
subspace of V . Suppose now that W1 ∪ W2 is a subspace of V , and at the same time there are
vectors v1 ∈ W1\W2 and v2 ∈ W2\W1. Set v1 + v2 = v3. Since W1 ∪ W2 is a subspace of V ,
v3 ∈ W1 ∪W2, hence either v3 ∈ W1, or v3 ∈ W2. In the first case we have that v2 ∈ W1, in the
second case we have that v1 ∈W2. In either case we get a contradiction.

Problem 6 from Section 1.4.

The statement is incorrect. In the case of the field F of characteristic 2 those vectors do not generate
F3. Let us prove that in the case of the field F of characteristic different from 2 (i.e. 1 + 1 6= 0) the
statement holds. Denote v1 = (1, 1, 0), v2 = (1, 0, 1), v3 = (0, 1, 1). It is enough to show that some
linear combinations of v1, v2, v3 give the vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1). But we can explicitly
check that (1, 0, 0) = 1

2(v1 + v2 − v3), (0, 1, 0) = 1
2(v1 + v3 − v2), and (0, 0, 1) = 1

2(v2 + v3 − v1).

Problem 10 from Section 1.4.

Since the matrices M1,M2,M3 are symmetric, any linear combination is also symmetric. Therefore



span{M1,M2,M3} is a subset of the space of symmetric matrices. At the same time if A is a

symmetric matrix of the form
(

a b
b c

)
, then A = aM1 + cM2 + bM3, and therefore the set of

symmetric matrices is contained in span{M1,M2,M3}.

Problem 12 from Section 1.4.

It was proven already that span{W} is a subspace, so if W = span{W}, then W is a subspace.
On the other hand, if W ⊆ V is a subspace, then any linear combination of vectors from W is in
W , and hence span{W} ⊆ W . Since the inclusion W ⊆ span{W} always holds, we must have
W = span{W}.

Problem 2 from Section 1.5.

a) linearly dependent;
b) linearly independent;
c) linearly independent;
d) linearly dependent;
e) linearly dependent;
f) linearly independent;
g) linearly dependent;
h) linearly independent;
i) linearly independent;
j) linearly dependent.

Problem 10 from Section 1.5.

For example, (1, 0, 0), (0, 1, 0), and (1, 1, 0). Certainly, there are many other examples.

Problem 2 from Section 1.6.

a) Basis;
b) Not a basis;
c) Basis;
d) Basis;
e) Not a basis.

Problem 3 from Section 1.6.

a) Not a basis;
b) Basis;
c) Basis;
d) Basis;
e) Not a basis.

Problem 4 from Section 1.6.

No, three vectors cannot generate a four dimensional space.

Problem 12 from Section 1.6.



It is clear that v + w ∈ span{u, v, w} and u + v + w ∈ span{u, v, w}, hence span{u + v + w, v +
w,w} ⊆ span{u, v, w}. Also, since v = (v + w) − w, and u = (u + v + w) − (v + w), we have
that u, v, w ∈ span{u + v + w, v + w,w}, and hence span{u, v, w} ⊆ span{u + v + w, v + w,w}.
This proves that span{u + v + w, v + w,w} = span{u, v, w}. If {u, v, w} is a basis in V , then
V = span{u, v, w} is a three dimensional vector space. Since {u+ v + w, v + w,w} is a generating
set of three vectors in three dimensional space, it must be a basis.


