121A HW 3 Solutions
2.4.2:
(a) Not invertible because $\operatorname{dim}\left(\mathbb{R}^{2}\right)=2 \neq 3=\operatorname{dim}\left(\mathbb{R}^{3}\right)$
(b) Not invertible, same as (a)
(c) Invertible. A quick argument shows $N(T)=\{0\}$, and since the domain space and target space have the same dimension, this implies T is bijective, so invertible.
(d) Not invertible. As in (a), (b) the dimensions don't match
(e) Not invertible. Same reason
(f) Invertible. Not hard to show $N(T)=\{0\}$, so T is injective. As in (c) this implies T is bijective, so invertible.
2.4 .3
(a) Not isomorphic. They have different dimension.
(b) Isomorphic. They have the same dimension.
(c) Isomorphic. Same dimension
(d) Not isomorphic. $V=N\left(t_{r}\right)$, where $t_{r}: M_{2}(\mathbb{R}) \longrightarrow \mathbb{R}$ is the trace map. We saw previously that this has dimension 3, so the spaces have different dimension.
2.4.14: Let $T: V \rightarrow \mathbb{F}^{3}$ be the map

$$
T\left(\left[\begin{array}{cc}
a & a+b \\
0 & c
\end{array}\right]\right)=(a, a+b, c)
$$

It is straightforward to check T is linear, so we show T is bijective.
Injectivity: Easy to check $N(T)=\left\{\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\right\}$ so T is injective.
Surjectivity: Let $\left(a_{1}, a_{2}, a_{3}\right) \in F^{3}$. Set $a=a_{1}, b=a_{2}-a_{1}, c=a_{3}$. Then,

$$
T\left(\left[\begin{array}{cc}
a & a+b \\
0 & c
\end{array}\right]\right)=(a, a+b, c)=\left(a_{1}, a_{1}+a_{2}-a_{1}, a_{3}\right)=\left(a_{1}, a_{2}, a_{3}\right)
$$

So, T is bijective and hence invertible.
2.4.16: First, notice Φ is linear: if $A_{1}, A_{2} \in M_{n}(F)$ and $c \in F$ then

$$
\begin{aligned}
\Phi\left(c A_{1}+A_{2}\right) & =B^{-1}\left(c A_{1}+A_{2}\right) B \\
& =\left(B^{-1} c A_{1}+B^{-1} A_{2}\right) B \\
& =c B^{-1} A_{1} B+B^{-1} A_{2} B=c \bar{\square}\left(A_{1}\right)+\Phi\left(A_{2}\right)
\end{aligned}
$$

Since the domain space and co-domain space have the same dimension, we only need to check Φ is injective to show it is bijective, and hence invertible.
\$ is injective: If $\Phi(A)=0$, then

$$
B^{-1} A B=0
$$

$B^{2} A B B^{I} B^{-1}=B O B^{-1}$
$A=0$
So $N(\Phi)=\{0\}$
Alternative Solution: Let $T: M_{n}(F) \rightarrow M_{n}(F)$ be defined by

$$
T(A)=B A B^{-1}
$$

As above, T is linear, then just check that $T=\Phi^{-1}$.
2.5 .2
(a) $\left[\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right]$
(c) $\left[\begin{array}{ll}3 & -1 \\ 5 & -2\end{array}\right]$
(b) $\left[\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right]$
(d) $\left[\begin{array}{ll}2 & -1 \\ 5 & -4\end{array}\right]$
2.5 .3
(a) $\left[\begin{array}{lll}a_{2} & b_{2} & c_{2} \\ a_{1} & b_{1} & c_{1} \\ a_{0} & b_{0} & c_{0}\end{array}\right]$
(d) $\left[\begin{array}{rrr}2 & 1 & 1 \\ 3 & -2 & 1 \\ -1 & 3 & 1\end{array}\right]$
(b) $\left[\begin{array}{lll}a_{0} & b_{0} & c_{0} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right]$
(e) $\left[\begin{array}{ccc}5 & -6 & 3 \\ 0 & 4 & -1 \\ 3 & -1 & 2\end{array}\right]$
(c) $\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ -3 & 2 & 1\end{array}\right]$
(f) $\left[\begin{array}{ccc}-2 & 1 & 2 \\ 3 & 4 & 1 \\ -1 & 5 & 2\end{array}\right]$
2.5.10: Note, by a previous $H W$, we know $\operatorname{tr}(C D)=\operatorname{tr}(D C)$. So, if A is similar to B then there is Q such that $A=Q B Q^{-1}$. Then,

$$
\begin{aligned}
\operatorname{tr}(A) & =\operatorname{tr}\left(Q B Q^{-1}\right) \\
1+W \rightarrow & =\operatorname{tr}\left(Q^{-1} Q B\right) \\
& =\operatorname{tr}(I B) \\
& =\operatorname{tr}(B)
\end{aligned}
$$

2.5.11: Let $Q=[I]_{\alpha}^{\beta}$ and $R=[I]_{\beta}^{\gamma}$
(a) Notice, Thy 2.11

$$
R Q=[I]_{\beta}^{\gamma}[I]_{\alpha}^{\beta} \stackrel{\downarrow}{=}[I I]_{\alpha}^{\gamma}=[I]_{\alpha}^{\gamma}
$$

(b) Notice,

$$
Q^{-1}=\left([I]_{\alpha}^{\beta}\right)^{-1} \stackrel{T_{m} 2.18}{=}\left[I^{-1}\right]_{\beta}^{\alpha}=[I]_{\beta}^{\alpha}
$$

3.1.3:
(a) Swap row 1 and row 3, so inverse is itself

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

(b) 3 times row 2 , so inverse is

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / 3 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(c) -2 times row 1 added to row 3, so inverse is

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]
$$

3.1.8: This was done in detail in discussion. Handle each row operation separately. If Q is obtained by type 1, then just do the same operation to get back to P.

If Q is obtained by type 2, where the row is scaled by c, then scale the same row by $\frac{1}{c}$ to get back to P.
If Q is obtained by type 3, where we add c. row i to row j, then add $-c$.row i to row j to get back to P.
3.2 .2
(a) 2
(d) 1
(g) 1
(b) 3
(e) 3
(c) 2
(f) 3
$3.2 .5:$
(a) rank $=2$
inverse: $\left[\begin{array}{cc}-1 & 2 \\ 1 & -1\end{array}\right]$
(b) rank $=1$
(c) rank $=2$
(d) $\mathrm{rank}=3$
inverse $\left[\begin{array}{ccc}-1 / 2 & 3 & -1 \\ 3 / 2 & -4 & 2 \\ 1 & -2 & 1\end{array}\right]$
(e) $\mathrm{rank}=3$
inverse: $\left[\begin{array}{ccc}1 / 6 & -1 / 3 & 1 / 2 \\ 1 / 2 & 0 & -1 / 2 \\ -1 / 6 & 1 / 3 & 1 / 2\end{array}\right]$
(f) $\operatorname{rank}=2$
(g) $r a n k=4$
inverse: $\left[\begin{array}{cccc}-51 & 15 & 7 & 12 \\ 31 & -9 & -4 & -7 \\ -10 & 3 & 1 & 2 \\ -3 & 1 & 1 & 1\end{array}\right]$
(h) $\mathrm{rank}=3$
$3.2 .6:$
(a) T is invertible,

$$
T^{-1}\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=-\left(a_{0}+2 a_{1}+10 a_{2}\right)+-\left(a_{1}+4 a_{2}\right) x-a_{2} x^{2}
$$

(b) T is not invertible, $N(T) \neq\{0\}$, for example, $1 \in N(T)$.
(c) T is invertible,

$$
T^{-1}\left(a_{1}, a_{2}, a_{3}\right)=\left(1 / 6 a_{1}-1 / 3 a_{2}+1 / 2 a_{3}, 1 / 2 a_{1}-1 / 2 a_{3},-1 / 6 a_{1}+1 / 3 a_{2}+1 / 2 a_{3}\right)
$$

(d) T is invertible,

$$
T^{-1}\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=\left(a_{2}, \frac{1}{2} a_{0}-\frac{1}{2} a_{1}, \frac{1}{2} a_{0}+\frac{1}{2} a_{1}-a_{2}\right)
$$

(e) T is invertible,

$$
T^{-1}\left(a_{1}, a_{2}, a_{3}\right)=a_{2}+\left(\frac{1}{2} a_{3}-\frac{1}{2} a_{1}\right) x+\left(\frac{1}{2} a_{1}+\frac{1}{2} a_{3}-a_{2}\right) x^{2}
$$

(f) T is not invertible, it is not injective since $N(T) \neq\{0\}$. For example, $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right] \in N(T)$
4.1.2:
(a) 30
(b) -17
(c) -8
4.1 .3
(a) $-10+15 i$
(b) $36+41 i$
(c) -24

