
Math 121A, Homework 2

§1.7: 5, 7; §2.1: 1, 5, 6, 19, 20; §2.2: 2, 5, 14, 16; §2.3: 2, 4, 12, 13
SPACE

SPACE

1.7.5. This was done in detail in discussion, so some details may need to be filled in by the student. First assume β is a
basis. Since a basis spans,we only need to see that each nonzero x ∈ V has a unique representation as

x = c1u1 + · · ·+ cnun

where the ci ∈ F are nonzero scalars and each ui ∈ β. If not, x has two representations, say

c1u1 + · · ·+ cnun = x = d1v1 + · · ·+ dmvm

where are the scalars are nonzero and the vectors are from β. Since c1 6= 0 we can divide by it and get

u1 =
1

c1
(d1v1 + · · ·+ dmvm − c2u2 − · · · − cnun)

So u1 is a linear combination of vectors from β. This contradicts that β is linearly independent.

Now assume β has the property in the problem statement. We need to see that β is a basis. It is not hard to see
that β spans, so we need to show linear independence. First note, that by the property on β, each vector u ∈ β has
a unique representation as

u = 1 · u

If β is not linearly independent, then there is are vectors u, u1, . . . , un ∈ β and nonzero scalars c1, . . . , cn such that

u = c1u1 + · · ·+ cnun

This contradicts u having the unique representation stated above.

1.7.7. This was done in detail in discussion, so some details may need to be filled in by the student. Note that S ∪ β is a
spanning set, since β is spanning, so by Theorem 1.12, it suffices to find a maximal linearly independent subset of
S ∪ β. Let

F = {S ∪B ⊆ S ∪ β | S ∪B is linearly independent }

It is not hard to verify that F has the maximal principle: if C ⊆ F is a chain, then an upperbound is the union of
C, one just needs to check that this union is an element of F .

Since F satisfies the maximal principle, it has a maximal element, S ∪ B∗. By definiton of F , S ∪ B∗ is linearly
independent. To see it is a maximal linearly independent subset of S ∪ β, suppose not. Then, there is v ∈
(S ∪ β)− (S ∪B∗) such that S ∪B∗ ∪ {v} is linearly independent. But this contradicts the maximality of S ∪B∗ in
F .

2.1.1. a. True

b. False

c. False (need T to be linear)

d. True

e. False

f. False

g. True

h. False



2.1.5. T is linear: let p, q ∈ P2(R) and c ∈ R.

T (cp(x) + q(x)) = x(cp(x) + q(x)) + (cp(x) + q(x))′

= cxp(x) + xq(x) + cp′(x) + q′(x)

= c(xp(x) + p′(x)) + xq(x) + q′(x)

= cT (p(x)) + T (q(x))

If p(x) ∈ N(T ), then it is easy to see that p(x) = 0, so N(T ) = {0} and the basis is ∅. Thus, T is injective.

Since T is injective, a basis for R(T ) is {T (1), T (x), T (x2)} = {x, x2 + 1, x3 + 2x}. By dimension considerations, T
is not onto. And we also have

rank(T ) + nullity(T ) = 3 + 0 = 3 = dim(P2(R))

2.1.6. T is linear: Let c ∈ F and A,B ∈Mn(F ).

T (cA+ cB) = (cA11 +B11) + (cA22 +B22) + . . .+ (cAnn +Bnn)

= c(A11 +A22 + . . .+Ann) + (B11 +B22 + . . .+Bnn)

= cT (A) + T (B)

A basis for N(T ) is the set of matrices A such that A has a 1 off its main diagonal, and 0 elsewhere, or A has a 1
in the top left and a −1 in some other diagonal entry, and 0 everywhere else. More formally, a basis is

B = {Aj∗,k∗1 | j∗, k∗ ∈ {1, . . . , n} and j∗ 6= k∗} ∪ {Aj∗2 | j∗ = 2, . . . , n}

(Aj∗,k∗1 )jk =

{
1 if (j, k) = (j∗, k∗)

0 otherwise
(Aj∗2 )jk =


1 if j = k = 1

−1 if j = k = j∗

0 otherwise

A basis for R(T ) = {1}, so

nullity(T ) + rank(T ) = n2 − 1 + 1 = n2 = dim(Mn(F ))

Moreover, T is not injective, but it is surjective.

2.1.19. Define T : R3 → R2 by:

T (1, 0, 0) = (0, 0)

T (0, 1, 0) = (1, 0)

T (0, 0, 1) = (0, 1)

Define U : R3 → R2 by:

U(1, 0, 0) = (0, 0)

U(0, 1, 0) = (0, 1)

U(0, 0, 1) = (1, 0)

Then N(T ) = {(a, 0, 0) | a ∈ R} = N(U) and R(T ) = R2 = R(U). There are other examples of course.

2.1.20. Suppose V1 is a subspace of V . We haveT (V1) is a subspace of W by the subspace criterion:



(a) 0 ∈ V1 since V1 is a subspace, so 0 = T (0) ∈ T (V1).

(b) If T (x), T (y) ∈ T (V1) then x, y ∈ V1 and since V1 is a subspace, x+ y ∈ V1. Hence, T (x) + T (y) = T (x+ y) ∈
T (V1) where the equality comes from linearity of T .

(c) If T (x) ∈ T (V1) and c ∈ F then cx ∈ V1 since its a subspace, so cT (x) = T (cx) ∈ T (V1) where again, the
equality is from linearity.

Let T−1(W1) = {x ∈ V | T (x) ∈W1}. We have T−1(W1) is a subspace of V by the subspace criterion:

(a) 0 ∈ T−1(W1) since T (0) = 0 ∈W1 because W1 is a subspace and T is linear. =⇒ 0 ∈ T(W1)

(b) If x, y ∈ T−1(W1) then T (x), T (y) ∈ W1, so T (x + y) = T (x) + T (y) ∈ W1 since W1 is a subspace and T is
linear. This gives x+ y ∈ T−1(W1).

(c) If x ∈ T−1(W1) and c ∈ F , then T (cx) = cT (x) ∈ W1 since W1 is a subspace and T is linear. Hence,
cx ∈ T−1(W1).

2.2.2. a.

2 −1
3 4
1 0


b.

[
2 3 1
1 0 1

]
c.
[
2 1 −3

]
d.

 0 2 1
−1 4 5
1 0 1



e.


1 0
1 0

1 0 0
...
1 0



f.



1

0 1
1

· · ·
1

1 0
1


g.
[
1 0 0 . . . 0 . . . 0 0 1

]
2.2.5. a.


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


b.


0 1 0
2 2 2
0 0 0
0 0 2


c.
[
1 0 0 1

]
d.
[
1 2 4

]
e.


1
−2
0
4


f.

 2
−6
1





g.
[
a
]

2.2.14. Fix n ∈ N. Suppose
a1T1 + a2T2 + . . .+ anTn = 0 (1)

By induction on j ≤ n we show aj = 0.

Note that (1) means
a1T1(p(x)) + a2T2(p(x)) + . . .+ anTn(p(x)) = 0 (2)

for every polynomial p(x) ∈ P (x).

Base case (j = 1):

Apply (2) to p(x) = x.

a1T1(x) + a2T2(x) + . . .+ anTn(x) = 0 =⇒ a1 + 0 + . . .+ 0 = 0 =⇒ a1 = 0

Inductive step

Assume a1, a2, . . . , aj = 0; we want to show aj+1 = 0. Apply (2) to p(x) = xj+1.

a1T1(xj+1) + a2T2(xj+1) + . . .+ anTn(xj+1) = 0

By assumption a1, a2, . . . , aj = 0, so 0 + · · ·+ 0 + aj+1Tj+1(xj+1) + . . .+ anTn(xj+1) = 0 =⇒ (j + 1)!aj+1 +
0 + · · ·+ 0 = 0 =⇒ aj+1 = 0

Hence, by induction, a1, . . . , an = 0, so T1, . . . Tn are linearly independent.

2.2.16. This was done in detail in discussion, so some details may need to be filled in by the student. Assume
dim(V ) = dim(W ) = n. Start with a basis {v1, . . . , vm} for N(T ). Inductively, for i = m+ 1, . . . , n find vectors

vi ∈ V − span(v1, . . . vm, . . . , vi−1)

Then, β = {v1, . . . , vn} is linearly independent, so is a basis for V . For i = m+ 1, . . . , n, let

wi = T (vi)

Show inductively that {wm+1, . . . , wn} is linearly independent. (If not, wi = cm+1wm+1 + · · · ci−1wi− 1 use
this to show vi ∈ span(v1 . . . , vi−1) which is a contradiction.) So {wm+1, . . . , wn} is a linearly independent set
in W , so we can extend it to a basis γ = {w1, . . . , wn}. Then,

[T ]γβ =
[
~0 · · · ~0 em+1 · · · en

]
where ej is the jth standard basis vector in Fn i.e. the vector with a 1 in slot j and 0 elsewhere, and ~0 denotes
the zero the vector in Fn.

2.3.2. a. A(2B+3C)=

[
20 −9 18
5 10 8

]
(AB)P=A(BD)=

[
29
−26

]
b. At =

[
2 −3 4
5 1 2

]
AtB =

[
23 19 40
26 −1 10

]
BCt =

12
16
29


CB =

[
27 7 9

]
CA =

[
20 26

]
2.3.4. a.


1
−1
4
6



b.


−6
2
0
6





c.
[
5
]

d.
[
12
]

2.3.12. a. Suppose x1, x2 ∈ V and x1 6= x2. If T (x1) = T (x2), then UT (x1) = UT (x2). So UT is not injective.
Contradiction.
No, U need not be injective. For example, let T : R → R2 : 1 7→ (1, 0) and let U : R2 → R : (1, 0) 7→
1, (0, 1) 7→ 0. Then UT : R→ R is injective but U is not.

b. Let z ∈ Z. Then there is v ∈ V such that UT (v) = z. So if T (v) = w ∈ W , then U(w) = z. So U is
surjective.
No, T need not be surjective. The previous example works here too.

c. UT is injective: if UT (v) = 0, then T (v) ∈ N(U). N(U) = {0} by injectivity of U , so T (v) = 0. Similarly,
injectivity of T gives that v = 0. So N(UT ) = {0}.
UT is surjective: If x ∈ Z, then there is w ∈ W such that U(w) = z. Also, there is v ∈ V such that
T (v) = w. Hence, UT (v) = U(T (v)) = U(w) = z.

2.3.13. (i) Using properties of summations and matrix multiplication:

tr(AB) =

n∑
l=1

(AB)ll

=

n∑
l=1

(
n∑
k=1

AlkBkl

)

=

n∑
k=1

n∑
l=1

AlkBkl

=

n∑
k=1

n∑
l=1

BklAlk

=

n∑
k=1

(
n∑
l=1

BklAlk

)

=

n∑
k=1

(BA)kk

= tr(BA)

(ii) Note that, (At)ii = Aii for i = 1, . . . , n. So,

tr(At) =

n∑
i=1

Atii =

n∑
i=1

Aii = tr(A)


