Math 121A, Homework 2

§1.7: 5, 7; §2.1: $1,5,6,19,20 ; \S 2.2: 2,5,14,16 ; \S 2.3: 2,4,12,13$
1.7.5. This was done in detail in discussion, so some details may need to be filled in by the student. First assume β is a basis. Since a basis spans, we only need to see that each nonzero $x \in V$ has a unique representation as

$$
x=c_{1} u_{1}+\cdots+c_{n} u_{n}
$$

where the $c_{i} \in F$ are nonzero scalars and each $u_{i} \in \beta$. If not, x has two representations, say

$$
c_{1} u_{1}+\cdots+c_{n} u_{n}=x=d_{1} v_{1}+\cdots+d_{m} v_{m}
$$

where are the scalars are nonzero and the vectors are from β. Since $c_{1} \neq 0$ we can divide by it and get

$$
u_{1}=\frac{1}{c_{1}}\left(d_{1} v_{1}+\cdots+d_{m} v_{m}-c_{2} u_{2}-\cdots-c_{n} u_{n}\right)
$$

So u_{1} is a linear combination of vectors from β. This contradicts that β is linearly independent.
Now assume β has the property in the problem statement. We need to see that β is a basis. It is not hard to see that β spans, so we need to show linear independence. First note, that by the property on β, each vector $u \in \beta$ has a unique representation as

$$
u=1 \cdot u
$$

If β is not linearly independent, then there is are vectors $u, u_{1}, \ldots, u_{n} \in \beta$ and nonzero scalars c_{1}, \ldots, c_{n} such that

$$
u=c_{1} u_{1}+\cdots+c_{n} u_{n}
$$

This contradicts u having the unique representation stated above.
1.7.7. This was done in detail in discussion, so some details may need to be filled in by the student. Note that $S \cup \beta$ is a spanning set, since β is spanning, so by Theorem 1.12, it suffices to find a maximal linearly independent subset of $S \cup \beta$. Let

$$
\mathcal{F}=\{S \cup B \subseteq S \cup \beta \mid S \cup B \text { is linearly independent }\}
$$

It is not hard to verify that \mathcal{F} has the maximal principle: if $\mathcal{C} \subseteq \mathcal{F}$ is a chain, then an upperbound is the union of \mathcal{C}, one just needs to check that this union is an element of \mathcal{F}.
Since \mathcal{F} satisfies the maximal principle, it has a maximal element, $S \cup B^{*}$. By definiton of $\mathcal{F}, S \cup B^{*}$ is linearly independent. To see it is a maximal linearly independent subset of $S \cup \beta$, suppose not. Then, there is $v \in$ $(S \cup \beta)-\left(S \cup B^{*}\right)$ such that $S \cup B^{*} \cup\{v\}$ is linearly independent. But this contradicts the maximality of $S \cup B^{*}$ in \mathcal{F}.
2.1.1. a. True
b. False
c. False (need T to be linear)
d. True
e. False
f. False
g. True
h. False
2.1.5. T is linear: let $p, q \in P_{2}(\mathbb{R})$ and $c \in \mathbb{R}$.

$$
\begin{aligned}
T(c p(x)+q(x)) & =x(c p(x)+q(x))+(c p(x)+q(x))^{\prime} \\
& =\operatorname{cxp}(x)+x q(x)+c p^{\prime}(x)+q^{\prime}(x) \\
& =c\left(x p(x)+p^{\prime}(x)\right)+x q(x)+q^{\prime}(x) \\
& =c T(p(x))+T(q(x))
\end{aligned}
$$

If $p(x) \in N(T)$, then it is easy to see that $p(x)=0$, so $N(T)=\{0\}$ and the basis is \emptyset. Thus, T is injective.
Since T is injective, a basis for $R(T)$ is $\left\{T(1), T(x), T\left(x^{2}\right)\right\}=\left\{x, x^{2}+1, x^{3}+2 x\right\}$. By dimension considerations, T is not onto. And we also have

$$
\operatorname{rank}(T)+\operatorname{nullity}(T)=3+0=3=\operatorname{dim}\left(P_{2}(\mathbb{R})\right)
$$

2.1.6. T is linear: Let $c \in F$ and $A, B \in M_{n}(F)$.

$$
\begin{aligned}
T(c A+c B) & =\left(c A_{11}+B_{11}\right)+\left(c A_{22}+B_{22}\right)+\ldots+\left(c A_{n n}+B_{n n}\right) \\
& =c\left(A_{11}+A_{22}+\ldots+A_{n n}\right)+\left(B_{11}+B_{22}+\ldots+B_{n n}\right) \\
& =c T(A)+T(B)
\end{aligned}
$$

A basis for $N(T)$ is the set of matrices A such that A has a 1 off its main diagonal, and 0 elsewhere, or A has a 1 in the top left and a -1 in some other diagonal entry, and 0 everywhere else. More formally, a basis is

$$
\begin{gathered}
B=\left\{A_{1}^{j_{*}, k_{*}} \mid j_{*}, k_{*} \in\{1, \ldots, n\} \text { and } j_{*} \neq k_{*}\right\} \cup\left\{A_{2}^{j_{*}} \mid j_{*}=2, \ldots, n\right\} \\
\left(A_{1}^{j_{*}, k_{*}}\right)_{j k}=\left\{\begin{array}{ll}
1 & \text { if }(j, k)=\left(j_{*}, k_{*}\right) \\
0 & \text { otherwise }
\end{array} \quad\left(A_{2}^{j_{*}}\right)_{j k}= \begin{cases}1 & \text { if } j=k=1 \\
-1 & \text { if } j=k=j_{*} \\
0 & \text { otherwise }\end{cases} \right.
\end{gathered}
$$

A basis for $R(T)=\{1\}$, so

$$
\operatorname{nullity}(T)+\operatorname{rank}(T)=n^{2}-1+1=n^{2}=\operatorname{dim}\left(M_{n}(F)\right)
$$

Moreover, T is not injective, but it is surjective.
2.1.19. Define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by:

$$
\begin{aligned}
& T(1,0,0)=(0,0) \\
& T(0,1,0)=(1,0) \\
& T(0,0,1)=(0,1)
\end{aligned}
$$

Define $U: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by:

$$
\begin{aligned}
& U(1,0,0)=(0,0) \\
& U(0,1,0)=(0,1) \\
& U(0,0,1)=(1,0)
\end{aligned}
$$

Then $N(T)=\{(a, 0,0) \mid a \in \mathbb{R}\}=N(U)$ and $R(T)=\mathbb{R}^{2}=R(U)$. There are other examples of course.
2.1.20. Suppose V_{1} is a subspace of V. We have $T\left(V_{1}\right)$ is a subspace of W by the subspace criterion:
(a) $0 \in V_{1}$ since V_{1} is a subspace, so $0=T(0) \in T\left(V_{1}\right)$.
(b) If $T(x), T(y) \in T\left(V_{1}\right)$ then $x, y \in V_{1}$ and since V_{1} is a subspace, $x+y \in V_{1}$. Hence, $T(x)+T(y)=T(x+y) \in$ $T\left(V_{1}\right)$ where the equality comes from linearity of T.
(c) If $T(x) \in T\left(V_{1}\right)$ and $c \in F$ then $c x \in V_{1}$ since its a subspace, so $c T(x)=T(c x) \in T\left(V_{1}\right)$ where again, the equality is from linearity.
Let $T^{-1}\left(W_{1}\right)=\left\{x \in V \mid T(x) \in W_{1}\right\}$. We have $T^{-1}\left(W_{1}\right)$ is a subspace of V by the subspace criterion:
(a) $0 \in T^{-1}\left(W_{1}\right)$ since $T(0)=0 \in W_{1}$ because W_{1} is a subspace and T is linear. $\left.\Longrightarrow 0 \in T_{(} W_{1}\right)$
(b) If $x, y \in T^{-1}\left(W_{1}\right)$ then $T(x), T(y) \in W_{1}$, so $T(x+y)=T(x)+T(y) \in W_{1}$ since W_{1} is a subspace and T is linear. This gives $x+y \in T^{-1}\left(W_{1}\right)$.
(c) If $x \in T^{-1}\left(W_{1}\right)$ and $c \in F$, then $T(c x)=c T(x) \in W_{1}$ since W_{1} is a subspace and T is linear. Hence, $c x \in T^{-1}\left(W_{1}\right)$.
2.2.2. a. $\left[\begin{array}{cc}2 & -1 \\ 3 & 4 \\ 1 & 0\end{array}\right]$
b. $\left[\begin{array}{lll}2 & 3 & 1 \\ 1 & 0 & 1\end{array}\right]$
c. $\left[\begin{array}{lll}2 & 1 & -3\end{array}\right]$
d. $\left[\begin{array}{ccc}0 & 2 & 1 \\ -1 & 4 & 5 \\ 1 & 0 & 1\end{array}\right]$
e. $\left[\begin{array}{ccc}1 & 0 & \\ 1 & 0 & \\ 1 & 0 & 0 \\ \vdots & & \\ 1 & 0 & \end{array}\right]$

g. $\left[\begin{array}{lllllllll}1 & 0 & 0 & \ldots & 0 & \ldots & 0 & 0 & 1\end{array}\right]$
2.2.5.
2.5. a.
$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
b. $\left[\begin{array}{lll}0 & 1 & 0 \\ 2 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 2\end{array}\right]$
c. $\left[\begin{array}{llll}1 & 0 & 0 & 1\end{array}\right]$
d. $\left[\begin{array}{lll}1 & 2 & 4\end{array}\right]$
e. $\left[\begin{array}{c}1 \\ -2 \\ 0 \\ 4\end{array}\right]$
f. $\left[\begin{array}{c}2 \\ -6 \\ 1\end{array}\right]$
g. $[a]$
2.2.14. Fix $n \in \mathbb{N}$. Suppose

$$
\begin{equation*}
a_{1} T_{1}+a_{2} T_{2}+\ldots+a_{n} T_{n}=0 \tag{1}
\end{equation*}
$$

By induction on $j \leq n$ we show $a_{j}=0$.
Note that (1) means

$$
\begin{equation*}
a_{1} T_{1}(p(x))+a_{2} T_{2}(p(x))+\ldots+a_{n} T_{n}(p(x))=0 \tag{2}
\end{equation*}
$$

for every polynomial $p(x) \in P(x)$.
Base case $(j=1)$:
$\overline{\text { Apply (2) to } p(x)}=x$.
$a_{1} T_{1}(x)+a_{2} T_{2}(x)+\ldots+a_{n} T_{n}(x)=0 \Longrightarrow a_{1}+0+\ldots+0=0 \Longrightarrow a_{1}=0$
Inductive step
Assume $a_{1}, a_{2}, \ldots, a_{j}=0$; we want to show $a_{j+1}=0$. Apply (2) to $p(x)=x^{j+1}$.
$a_{1} T_{1}\left(x^{j+1}\right)+a_{2} T_{2}\left(x^{j+1}\right)+\ldots+a_{n} T_{n}\left(x^{j+1}\right)=0$
By assumption $a_{1}, a_{2}, \ldots, a_{j}=0$, so $0+\cdots+0+a_{j+1} T_{j+1}\left(x^{j+1}\right)+\ldots+a_{n} T_{n}\left(x^{j+1}\right)=0 \Longrightarrow(j+1)!a_{j+1}+$ $0+\cdots+0=0 \Longrightarrow a_{j+1}=0$
Hence, by induction, $a_{1}, \ldots, a_{n}=0$, so $T_{1}, \ldots T_{n}$ are linearly independent.
2.2.16. This was done in detail in discussion, so some details may need to be filled in by the student. Assume $\operatorname{dim}(V)=\operatorname{dim}(W)=n$. Start with a basis $\left\{v_{1}, \ldots, v_{m}\right\}$ for $N(T)$. Inductively, for $i=m+1, \ldots, n$ find vectors

$$
v_{i} \in V-\operatorname{span}\left(v_{1}, \ldots v_{m}, \ldots, v_{i-1}\right)
$$

Then, $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent, so is a basis for V. For $i=m+1, \ldots, n$, let

$$
w_{i}=T\left(v_{i}\right)
$$

Show inductively that $\left\{w_{m+1}, \ldots, w_{n}\right\}$ is linearly independent. (If not, $w_{i}=c_{m+1} w_{m+1}+\cdots c_{i-1} w i-1$ use this to show $v_{i} \in \operatorname{span}\left(v_{1} \ldots, v_{i-1}\right)$ which is a contradiction.) So $\left\{w_{m+1}, \ldots, w_{n}\right\}$ is a linearly independent set in W, so we can extend it to a basis $\gamma=\left\{w_{1}, \ldots, w_{n}\right\}$. Then,

$$
[T]_{\beta}^{\gamma}=\left[\begin{array}{llllll}
\overrightarrow{0} & \cdots & \overrightarrow{0} & e_{m+1} & \cdots & e_{n}
\end{array}\right]
$$

where e_{j} is the $j^{t h}$ standard basis vector in F^{n} i.e. the vector with a 1 in slot j and 0 elsewhere, and $\overrightarrow{0}$ denotes the zero the vector in F^{n}.
2.3.2. a. $A(2 B+3 C)=\left[\begin{array}{ccc}20 & -9 & 18 \\ 5 & 10 & 8\end{array}\right]$

$$
(A B) P=A(B D)=\left[\begin{array}{c}
29 \\
-26
\end{array}\right]
$$

b. $A^{t}=\left[\begin{array}{ccc}2 & -3 & 4 \\ 5 & 1 & 2\end{array}\right]$
$A^{t} B=\left[\begin{array}{lll}23 & 19 & 40 \\ 26 & -1 & 10\end{array}\right]$
$B C^{t}=\left[\begin{array}{l}12 \\ 16 \\ 29\end{array}\right]$
$C B=\left[\begin{array}{lll}27 & 7 & 9\end{array}\right]$
$C A=\left[\begin{array}{ll}20 & 26\end{array}\right]$
2.3.4. a. $\left[\begin{array}{c}1 \\ -1 \\ 4 \\ 6\end{array}\right]$
b. $\left[\begin{array}{c}-6 \\ 2 \\ 0 \\ 6\end{array}\right]$
c. [5]
d. [12]
2.3.12. a. Suppose $x_{1}, x_{2} \in V$ and $x_{1} \neq x_{2}$. If $T\left(x_{1}\right)=T\left(x_{2}\right)$, then $U T\left(x_{1}\right)=U T\left(x_{2}\right)$. So $U T$ is not injective. Contradiction.
No, U need not be injective. For example, let $T: \mathbb{R} \rightarrow \mathbb{R}^{2}: 1 \mapsto(1,0)$ and let $U: \mathbb{R}^{2} \rightarrow \mathbb{R}:(1,0) \mapsto$ $1,(0,1) \mapsto 0$. Then $U T: \mathbb{R} \rightarrow \mathbb{R}$ is injective but U is not.
b. Let $z \in Z$. Then there is $v \in V$ such that $U T(v)=z$. So if $T(v)=w \in W$, then $U(w)=z$. So U is surjective.
No, T need not be surjective. The previous example works here too.
c. $U T$ is injective: if $U T(v)=0$, then $T(v) \in N(U) . N(U)=\{0\}$ by injectivity of U, so $T(v)=0$. Similarly, injectivity of T gives that $v=0$. So $N(U T)=\{0\}$.
$U T$ is surjective: If $x \in Z$, then there is $w \in W$ such that $U(w)=z$. Also, there is $v \in V$ such that $T(v)=w$. Hence, $U T(v)=U(T(v))=U(w)=z$.
2.3.13. (i) Using properties of summations and matrix multiplication:

$$
\begin{aligned}
\operatorname{tr}(A B) & =\sum_{l=1}^{n}(A B)_{l l} \\
& =\sum_{l=1}^{n}\left(\sum_{k=1}^{n} A_{l k} B_{k l}\right) \\
& =\sum_{k=1}^{n} \sum_{l=1}^{n} A_{l k} B_{k l} \\
& =\sum_{k=1}^{n} \sum_{l=1}^{n} B_{k l} A_{l k} \\
& =\sum_{k=1}^{n}\left(\sum_{l=1}^{n} B_{k l} A_{l k}\right) \\
& =\sum_{k=1}^{n}(B A)_{k k} \\
& =\operatorname{tr}(B A)
\end{aligned}
$$

(ii) Note that, $\left(A^{t}\right)_{i i}=A_{i} i$ for $i=1, \ldots, n$. So,

$$
\operatorname{tr}\left(A^{t}\right)=\sum_{i=1}^{n} A_{i i}^{t}=\sum_{i=1}^{n} A_{i i}=\operatorname{tr}(A)
$$

