Midterm Sample

Problem 1.

Write down a basis in the space of symmetric 2×2 matrices.

Problem 2.

Let a transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a reflection in the line $x=y$. Prove that T is linear and find its matrix representation (with respect to the standard basis in \mathbb{R}^{2}).

Problem 3.

Suppose V is a finite dimensional vector space, W_{1}, W_{2} are subspaces, and $W_{1}+W_{2}=V$. Prove that

$$
\operatorname{dim} V=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1} \cap W_{2}\right) .
$$

Problem 4.

TRUE or FALSE: There exists a basis $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$ in P_{3} such that none of the polynomials $p_{1}, p_{2}, p_{3}, p_{4}$ has degree 2 .

Problem 5.
Find nullity and rank of the linear transformation $T: M_{3 \times 3} \rightarrow M_{3 \times 3}$ given by $T(A)=A+A^{t}$.

Reminder: if $A=\left(a_{i j}\right)$, then $A^{t}=\left(b_{i j}\right)$ with $b_{i j}=a_{j i}$.

