INTRODUCTION TO TOPOLOGY, MATH 141, HW#5

Problem 1.

Consider C[0,1] - the space of all continuous function on [0,1] equipped with the norm $\|\cdot\|_{\infty}$. Let $P \subset C[0,1]$ be the space of all polynomials.

a) Show that P is a linear subspace of C[0, 1];

- b) Show that P is not closed in C[0, 1];
- c) Show that P is not open in C[0, 1].

Problem 2.

Consider

 $C^{1}[0,1] = \left\{ f: [0,1] \to \mathbb{R} \mid f \text{ is differentiable and } f' \text{ is continuous} \right\}.$

a) Show that $C^{1}[0,1]$ is a linear subspace of C[0,1];

b) Equip both $C^1[0,1]$ and C[0,1] with $\|\cdot\|_{\infty}$ norm. Show that $C^1[0,1]$ is not closed and not open in C[0,1];

c) Define $T: C^{1}[0,1] \to C[0,1]$ as T(f) = f'. Prove that T is a linear operator. Is it bounded?