Final Sample

Problem 1.

Let ϕ be defined by $\phi(x)=\frac{15}{16}\left(x^{2}-1\right)^{2}$ for $|x|<1$ and $\phi(x)=0$ otherwise. Let f be a function with continuous derivative. Find the limit

$$
\lim _{n \rightarrow \infty} \int_{-1}^{1} n^{2} \phi^{\prime}(n x) f(x) d x .
$$

Problem 2.

Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be sequence of nonzero real numbers. Prove that the sequence of functions

$$
f_{n}(x)=\frac{1}{a_{n}} \sin \left(a_{n} x\right)+\cos \left(x+a_{n}\right)
$$

has a subsequence converging to a continuous function.

Problem 3.

Let $C[0,1]$ be the space of continuous functions on $[0,1]$. Define

$$
d(f, g)=\int_{0}^{1} \frac{|f(x)-g(x)|}{1+|f(x)-g(x)|} d x
$$

Show that d is a metric on $C[0,1]$. Is the metric space ($C[0,1], d)$ complete?

Problem 4.

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a uniformly continuous function such that the improper integral $\int_{0}^{\infty} f(x) d x$ converges (and is finite). Show that

$$
\lim _{x \rightarrow \infty} f(x)=0 .
$$

Problem 5.

Let f be a 2π-periodic C^{2} function on \mathbb{R} with zero average over the period, that is $\int_{-\pi}^{\pi} f(x) d x=0$. Show that

$$
\int_{-\pi}^{\pi}(f(x))^{2} d x \leq \int_{-\pi}^{\pi}\left(f^{\prime}(x)\right)^{2} d x
$$

