Real Analysis
 Math 205B/H140B, Winter 2016

Homework 8, due March 8, 2016 in class
Chapter 15, problems 2, 3, 4, 5, 6, and the following problems:
Problem 1.
Find an orthonormal basis for the space of first degree polynomials, with inner product

$$
<f, g>=\int_{-1}^{1} f(x) g(x) d x
$$

Problem 2.

Use the previous problem to determine the constants a, b that minimize the integral

$$
\int_{-1}^{1}\left|e^{x}-a x-b\right|^{2} d x
$$

Problem 3.

Find the Fourier series of the function f defined by

$$
f(x)= \begin{cases}-1, & \text { if }-\pi<x<0 \\ 1, & \text { if } 0<x<\pi\end{cases}
$$

and f has period 2π. What does the Fourier series converge to at $x=0$? Problem 4.
Let $f(x)=x$ for $x \in(-\pi, \pi]$, and $f(x+2 \pi)=f(x)$. Find the Fourier series of f.

Problem 5.

Let α be any real number other than an integer. Let $f(x)=\cos (\alpha x)$ for $x \in(-\pi, \pi]$, and $f(x+2 \pi)=f(x)$. Prove that Fourier series of f is given by

$$
\frac{\sin \alpha \pi}{\alpha \pi}+\frac{1}{\pi} \sum_{k=1}^{\infty}\left[\frac{\sin (\alpha+k) \pi}{\alpha+k}+\frac{\sin (\alpha-k) \pi}{\alpha-k}\right] \cos (k x)
$$

