Midterm Sample

Problem 1.

For which values of real parameters α, β does the function $f : [0, 1] \to \mathbb{R}$,

$$\begin{cases} 0, & x = 0; \\ x^{\alpha} \sin x^{\beta}, & x > 0, \end{cases}$$

have bounded variation?

Problem 2.

Suppose that $\{f_{\alpha}\}_{\alpha \in A}$, $f_{\alpha} : [0,1] \to \mathbb{R}$, is an equicontinuous family. Suppose also that $f_{\alpha}(0) = 0$ for all $\alpha \in A$. Prove that $\{F_{\alpha}\}_{\alpha \in A}$, $F_{\alpha} : [0,1] \to \mathbb{R}$, $F_{\alpha}(x) = \int_{0}^{x} f_{\alpha}(t) dt$, is also an equivornation family.

Problem 3.

Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous, $f_n(x) = f(nx)$, $n \in \mathbb{N}$, and the family of functions $\{f_n\}_{n \in \mathbb{N}}$ is equicontinuous on [-1, 1]. What conclusion can you draw about f?

Problem 4.

Let f_n , n = 1, 2, 3, ..., and f be Riemann integrable real-valued functions defined on [0, 1]. For each of the following statements, determine whether the statement is true or not:

(a) If
$$\lim_{n\to\infty} \int_0^1 |f_n(x) - f(x)| \, dx = 0$$
 then $\lim_{n\to\infty} \int_0^1 |f_n(x) - f(x)|^2 \, dx = 0$;
(b) If $\lim_{n\to\infty} \int_0^1 |f_n(x) - f(x)|^2 \, dx = 0$ then $\lim_{n\to\infty} \int_0^1 |f_n(x) - f(x)| \, dx = 0$.

Problem 5.

Prove that the space $C^{1}[0, 1]$ (the space of continuously differentiable functions on [0, 1] with the metric $||f - g||_{C^{1}} = \max(||f - g||_{\infty}, ||f' - g'||_{\infty})$ is connected.