Final Sample

Problem 1.

Let $M_{n \times n}$ denote the space of $n \times n$ matrices over \mathbb{R}, identified in the usual way with $\mathbb{R}^{n \times n}$. Let the function F from $M_{n \times n}$ to $M_{n \times n}$ be defined by

$$
F(X)=X^{3}+X^{2}+X
$$

Find the derivative of the function F.

Problem 2.

a) TRUE or FALSE: For any continuously differentiable function $f: \mathbb{R}^{3} \rightarrow$ \mathbb{R} with $\operatorname{grad} f \neq 0$ at $0 \in \mathbb{R}^{3}$, there exist two other continuously differentiable functions $g, h: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that the map

$$
(x, y, z) \mapsto(f(x, y, z), g(x, y, z), h(x, y, z))
$$

from \mathbb{R}^{3} to \mathbb{R}^{3} is one-to-one in some neighborhood of the origin.
b) TRUE or FALSE: For any continuously differentiable functions $f: \mathbb{R}^{3} \rightarrow$ \mathbb{R} and $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ with grad $f \neq 0$, grad $g \neq 0$ at $0 \in \mathbb{R}^{3}$, there exists a continuously differentiable function $h: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that the map

$$
(x, y, z) \mapsto(f(x, y, z), g(x, y, z), h(x, y, z))
$$

from \mathbb{R}^{3} to \mathbb{R}^{3} is one-to-one in some neighborhood of the origin.

Problem 3.

Consider the forms $\omega=e^{x y+z^{2}} d x, \theta=x d x+y d y+z d z$, and $\eta=x d y+x^{2} d y$. Find $d \omega, \theta \wedge \eta, d(\omega \wedge \eta)$, and $\int_{\gamma} \theta$, where the curve γ is given by $\gamma(t)=$ $\left(t(t-1), t^{2} \sin (2 \pi t), 1-\cos (2 \pi t)\right)$.

Problem 4.

Suppose $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are smooth functions, and γ is a smooth closed curve without self intersections, positively oriented. Denote by $D \subset \mathbb{R}^{2}$
the domain enclosed by γ. Prove that

$$
\int_{\gamma}<f \operatorname{grad} g, \bar{n}>d s=\int_{D}(f \Delta g+<\operatorname{grad} f, \operatorname{grad} g>) d A
$$

where Δg is the Laplacian of the function g, and \bar{n} is a normal to the curve γ pointing outward of the domain D.

Problem 5.
Let S be the surface obtained by rotating the curve

$$
x=\cos t, y=\sin 2 t, t \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

around y-axis. Find the volume of the region inside of S.

