Real Analysis Math 205C/H140C, Spring 2016

Homework 1, due April 8, 2016 in class

Problem 1.

The pressure in the space at the position (x, y, z) is $p(x, y, z)=x^{2}+y^{2}-z^{3}$ and the trajectory of an observer is the curve $\bar{r}(t)=(t, t, 1 / t)$. Using the chain rule, compute the rate of change of the pressure the observer measures at time $t=2$.

Problem 2.

Find the directional derivative $D f(x, \bar{u})$, where $x=(1,2), \bar{u}=(1,1)$, and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$, $f(x, y)=x^{5} y+y^{3}+x+y$.

Problem 3.

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ be defined by

$$
f(x, y)= \begin{cases}\frac{x|y|}{\sqrt{x^{2}+y^{2}},} & \text { if }(x, y) \neq 0 \\ 0, & \text { if }(x, y)=0\end{cases}
$$

Is f differentiable at $(0,0)$? Explain your answer.

Problem 4.

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ be defined by $f(x, y)=\sqrt{|x y|}$. Prove that f is not differentiable at $(0,0)$.
Problem 5.
Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ be a function such that $|f(x)| \leq|x|^{2}$. Show that f is differentiable at $\overline{0}$.

Problem 6.

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Define $f(x, y)=\int_{0}^{x+y} g(t) d t$. Prove that f is differentiable and find $D f(x, y)$.

Problem 7.

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Define $f(x, y)=\int_{0}^{x \cdot y} g(t) d t$. Prove that f is differentiable and find $D f(x, y)$.

Problem 8.

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Define $f(x, y)=\int_{x+y}^{x \cdot y} g(t) d t$. Prove that f is differentiable and find $D f(x, y)$.

Problem 9.

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ be defined by

$$
f(x, y)= \begin{cases}x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}, & \text { if }(x, y) \neq 0 \\ 0, & \text { if }(x, y)=0\end{cases}
$$

Show that $D_{1,2} f(0,0) \neq D_{2,1} f(0,0)$. Does it contradict to the result we obtained? Problem 10.
Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ be defined by

$$
f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \sin \frac{1}{\sqrt{x^{2}+y^{2}},} & \text { if }(x, y) \neq 0 \\ 0, & \text { if }(x, y)=0\end{cases}
$$

Show that f is differentiable but $f \notin C^{1}\left(\mathbb{R}^{2}\right)$.

