Real Analysis Math 205C/H140C, Spring 2016

Homework 2, due April 15, 2016 in class

Problem 1.

Prove that a differentiable function $f: \mathbb{R} \rightarrow f(\mathbb{R}), f(\mathbb{R}) \subseteq \mathbb{R}$, with $f^{\prime}(x) \neq 0$ for all $x \in \mathbb{R}$ must be a bijection.
Problem 2.
TRUE or FALSE: A differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with det $D f(x) \neq 0$ for all $x \in \mathbb{R}^{n}$ must be a bijection.

Problem 3.

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at every point and such that $f(0)=0$ and $f^{\prime}(0) \neq 0$. Is it true that f is locally invertible in a neighborhood of zero? In other words, can one replace the condition $f \in C^{1}$ in the Inverse Function Theorem by merely differentiability of f ?

Problem 4.

Let $U \subset \mathbb{R}^{n}$ be an open set, and $f: U \rightarrow \mathbb{R}^{n}$ be a C^{1} function such that $\operatorname{det} D f(x) \neq 0$ for all $x \in U$. Prove that $f(U)$ is also open.

Problem 5.

Consider $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f(r, \theta)=(x(r, \theta), y(r, \theta))=(r \cos \theta, r \sin \theta)$. Find $\frac{\partial(x, y)}{\partial(r, \theta)}$ and $\frac{\partial(r, \theta)}{\partial(x, y)}$. At what points the map f is locally invertible?

Problem 6.
Consider the system of equations

$$
\left\{\begin{array}{l}
x^{2}-y^{2}-u^{3}+v^{2}+4=0 \\
2 x y+y^{2}-2 u^{2}+3 v^{4}+8=0
\end{array}\right.
$$

Prove that there are neighborhoods U of $(2,-1)$ and W of $(2,1)$ such that for each $(x, y) \in$ U there is a unique (u, v) in W such that (x, y, u, v) is a solution of the system.

Problem 7.

Do the conditions

$$
\left\{\begin{array}{l}
2 x+y+2 z+u-v=1 \\
x y+z-u+2 v=1 \\
y z+x z+u^{2}+v=0
\end{array}\right.
$$

define the first three variables (x, y, z) as a function $\phi(u, v)$ near the point $(x, y, z, u, v)=$ $(1,1,-1,1,1)$? If so, find the derivative matrix $D \phi(1,1)$.

Problem 8.

Consider the polynomial $x^{2016}-1$. Notice that it has a simple root 1 . Let $c(\lambda)$ be a continuous family of roots of polynomials $x^{2016}+\lambda x^{10}-1$, where λ is close to zero, and $c(0)=1$. Prove that $c(\lambda)$ is a function that is well defined and differentiable in some neighborhood of zero, and find $\frac{d c(\lambda)}{d \lambda}(0)$.

Problem 9.

Let $f: \mathbb{R}^{k+n} \rightarrow \mathbb{R}^{n}$ be of class C^{1}. Suppose that $f\left(x_{0}\right)=0$ and $D f\left(x_{0}\right)$ has rank n. Show that for any point $\xi \in \mathbb{R}^{n}$ sufficiently close to the origin, the equation $f(x)=\xi$ has a solution.

Problem 10.
Suppose $f(x, y) \in C^{1}$ and $f(0,0)=0$. What conditions on f will guarantee that the equation $f(f(x, y), y)=0$ can be solved for y as a C^{1} function of x near $(0,0)$?

