Real Analysis Math 205C/H140C, Spring 2016

Homework 3, due April 22, 2016 in class

Problem 1.

Let $S \subset \mathbb{R}^{n}$ be a set, and a collection $\left\{U_{\alpha}\right\}_{\alpha \in A}$ of open rectangles be such that $S \subseteq \cup_{\alpha \in A} U_{\alpha}$. Prove that one can find a countable sequence $\left\{U_{\alpha_{i}}\right\}_{i \in \mathbb{N}}$ such that $S \subseteq \cup_{i \in \mathbb{N}} U_{\alpha_{i}}$.

Problem 2.

Let $f:[0,1] \rightarrow \mathbb{R}$ be a positive continuous function. Use Fubini's theorem to derive an expression for the volume of the set $\left\{(x, y, z) \mid z \in[0,1], x^{2}+y^{2} \leq f(z)\right\} \subset \mathbb{R}^{3}$.

Problem 3.

Let $Q=[0,1] \times[0,1] \times[0,1] \subset \mathbb{R}^{3}, f: Q \rightarrow \mathbb{R}$ be a continuous function, and

$$
F\left(x_{1}, x_{2}, x_{3}\right)=\int_{\left[0, x_{1}\right] \times\left[0, x_{2}\right] \times\left[0, x_{3}\right]} f .
$$

Find $D F$.

Problem 4.

Let $Q=[0,1] \times[0,1], f: Q \rightarrow \mathbb{R}$ be a C^{1} function, and define

$$
F(x)=\int_{0}^{1} f(x, y) d y .
$$

Prove that $F^{\prime}(x)=\int_{0}^{1} \frac{\partial f(x, y)}{\partial x} d y$.
Problem 5.
TRUE or FALSE: Finite union of rectifiable sets in \mathbb{R}^{n} is rectifiable.

Problem 6.

TRUE or FALSE: Countable union of rectifiable sets in \mathbb{R}^{n} is rectifiable.

Problem 7.

TRUE or FALSE: Every compact subset of \mathbb{R}^{2} is rectifiable.

Problem 8.

TRUE or FALSE: Every set $E \subset \mathbb{R}^{n}$ that has zero measure is rectifiable.

Problem 9.

Give an example of a bounded open set $U \subset \mathbb{R}^{2}$ and a continuous function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $\int_{\bar{U}} f$ exists but $\int_{U} f$ does not.

Problem 10.

Suppose that $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ is bounded, and

- for each $x \in[0,1]$ the function $g_{x}:[0,1] \rightarrow \mathbb{R}, g_{x}(y)=f(x, y)$, is integrable;
- for each $y \in[0,1]$ the function $h_{y}:[0,1] \rightarrow \mathbb{R}, h_{y}(x)=f(x, y)$, is integrable;
- $\int_{0}^{1}\left(\int_{0}^{1} g_{x}(y) d y\right) d x=\int_{0}^{1}\left(\int_{0}^{1} h_{y}(x) d x\right) d y$.

Does it imply that the function $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ is integrable, and

$$
\int_{[0,1] \times[0,1]} f=\int_{0}^{1}\left(\int_{0}^{1} g_{x}(y) d y\right) d x=\int_{0}^{1}\left(\int_{0}^{1} h_{y}(x) d x\right) d y ?
$$

