REAL ANALYSIS MATH 205C/H140C, SPRING 2016

Homework 3, due April 22, 2016 in class

Problem 1.

Let $S \subset \mathbb{R}^n$ be a set, and a collection $\{U_\alpha\}_{\alpha \in A}$ of open rectangles be such that $S \subseteq \bigcup_{\alpha \in A} U_\alpha$. Prove that one can find a countable sequence $\{U_{\alpha_i}\}_{i \in \mathbb{N}}$ such that $S \subseteq \bigcup_{i \in \mathbb{N}} U_{\alpha_i}$.

Problem 2.

Let $f : [0,1] \to \mathbb{R}$ be a positive continuous function. Use Fubini's theorem to derive an expression for the volume of the set $\{(x, y, z) \mid z \in [0, 1], x^2 + y^2 \le f(z)\} \subset \mathbb{R}^3$.

Problem 3.

Let $Q = [0,1] \times [0,1] \times [0,1] \subset \mathbb{R}^3$, $f : Q \to \mathbb{R}$ be a continuous function, and

$$F(x_1, x_2, x_3) = \int_{[0, x_1] \times [0, x_2] \times [0, x_3]} f.$$

Find DF.

Problem 4.

Let $Q = [0,1] \times [0,1]$, $f : Q \to \mathbb{R}$ be a C^1 function, and define

$$F(x) = \int_0^1 f(x, y) dy.$$

Prove that $F'(x) = \int_0^1 \frac{\partial f(x,y)}{\partial x} dy$.

Problem 5.

TRUE or FALSE: Finite union of rectifiable sets in \mathbb{R}^n is rectifiable.

Problem 6.

TRUE or FALSE: Countable union of rectifiable sets in \mathbb{R}^n is rectifiable.

Problem 7.

TRUE or FALSE: Every compact subset of \mathbb{R}^2 is rectifiable.

Problem 8.

TRUE or FALSE: Every set $E \subset \mathbb{R}^n$ that has zero measure is rectifiable.

Problem 9.

Give an example of a bounded open set $U \subset \mathbb{R}^2$ and a continuous function $f : \mathbb{R}^2 \to \mathbb{R}$ such that $\int_{\overline{U}} f$ exists but $\int_U f$ does not.

Problem 10.

Suppose that $f : [0,1] \times [0,1] \rightarrow \mathbb{R}$ is bounded, and

- for each $x \in [0, 1]$ the function $g_x : [0, 1] \to \mathbb{R}$, $g_x(y) = f(x, y)$, is integrable; for each $y \in [0, 1]$ the function $h_y : [0, 1] \to \mathbb{R}$, $h_y(x) = f(x, y)$, is integrable;

• $\int_0^1 \left(\int_0^1 g_x(y) dy \right) dx = \int_0^1 \left(\int_0^1 h_y(x) dx \right) dy.$ Does it imply that the function $f : [0, 1] \times [0, 1] \to \mathbb{R}$ is integrable, and

$$\int_{[0,1]\times[0,1]} f = \int_0^1 \left(\int_0^1 g_x(y) dy \right) dx = \int_0^1 \left(\int_0^1 h_y(x) dx \right) dy \quad ?$$