Real Analysis Math 205C/H140C, Spring 2016

Homework 4, due May 2, 2016 in class

Problem 1.

Denote by \mathbb{D} the unit disc in $\mathbb{R}^{2}, \mathbb{D}=\left\{(x, y) \mid x^{2}+y^{2}<1\right\}$, and by $\mathbb{D}_{1-\varepsilon}$ - the disc centered at $(0,0)$ of radius $1-\varepsilon$. Suppose that $f: \mathbb{D} \rightarrow \mathbb{R}$ is a non-negative continuous function. Prove that $\int_{\mathbb{D}} f$ exists if and only if the limit $\lim _{\varepsilon \rightarrow 0+} \int_{\mathbb{D}_{\varepsilon}} f$ exists.

Problem 2.

TRUE or FALSE: Suppose $f: \mathbb{D} \rightarrow \mathbb{R}$ is a continuous function (not necessarily nonnegative). Then $\int_{\mathbb{D}} f$ exists if and only if the limit $\lim _{\varepsilon \rightarrow 0+} \int_{\mathbb{D}_{\varepsilon}} f$ exists.

Problem 3.

Set $A=\left\{(x, y) \in \mathbb{R}^{2} \mid x>1, y>1\right\} \subset \mathbb{R}^{2}$, and let $f: A \rightarrow \mathbb{R}$ be given by $f(x, y)=\frac{1}{x^{3} y^{2}}$. Does the integral $\int_{A} f$ exist? Explain. If yes, find it.

Problem 4.

Set $A=\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x<1,0<y<1\right\} \subset \mathbb{R}^{2}$, and let $f: A \rightarrow \mathbb{R}$ be given by $f(x, y)=\frac{1}{x^{3} y^{2}}$. Does the integral $\int_{A} f$ exist? Explain. If yes, find it.

Problem 5.

Give an example of a continuous function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that the integral $\int_{\mathbb{R}^{2}} f$ exists.

Problem 6.

Suppose that for some continuous function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and a sequence of compact rectifiable subsets $C_{n} \subset \mathbb{R}^{2}$ we have $\cup_{n=1}^{\infty} C_{n}=\mathbb{R}^{2}, C_{n} \subset \operatorname{int} C_{n+1}$, and the limit $\lim _{n \rightarrow \infty} \int_{C_{n}} f$ exists (and is finite). Does it imply that the integral $\int_{\mathbb{R}^{2}} f$ exists?

Problem 7.

Let $f(x, y)=\frac{1}{(x+y)^{2}}$, and the sets $A, B, C, D \subset \mathbb{R}^{2}$ be given by

$$
\begin{gathered}
A=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0, y \in\left(\frac{1}{2} x, 2 x\right)\right\}, \\
B=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0, y \in\left(\frac{1}{2} x^{2}, 2 x^{2}\right)\right\}, \\
C=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0, y>0, \quad y<x+x^{2}, x<y+y^{2}\right\}, \\
D=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0, \quad x<y<x+x^{2}\right\} .
\end{gathered}
$$

Which of the integrals $\int_{A} f, \int_{B} f, \int_{C} f, \int_{D} f$ do exist? Explain.

Problem 8.

TRUE or FALSE: For any compact subset $C \subset \mathbb{R}^{n}$ there exists a C^{∞} function $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $\operatorname{supp} \varphi=C$.

Problem 9.
TRUE or FALSE: For any bounded open subset $U \subset \mathbb{R}^{1}$ there exists a C^{∞} function $\varphi: \mathbb{R} \rightarrow$ \mathbb{R} such that $\operatorname{supp} \varphi=\bar{U}$.

Problem 10.
TRUE or FALSE: For any bounded open subset $U \subset \mathbb{R}^{n}$ there exists a C^{∞} function φ : $\mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $\operatorname{supp} \varphi=\bar{U}$.

