Real Analysis Math 205C/H140C, Spring 2016

Homework 5, due May 10, 2016 in class

Problem 1.

TRUE or FALSE: If a linear transformation $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ preserves volumes then A is an isometry.

Problem 2.
TRUE or FALSE: If a linear transformation $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is orthogonal (i.e. $A^{t r} A=I_{n}$) then it sends any orthonormal basis to an orthonormal basis.

Problem 3.

Consider the vectors $\bar{v}, \bar{u} \in \mathbb{R}^{2}, \bar{v}=(\cos \theta, \sin \theta), \bar{u}=(\cos (2 \theta), \sin (2 \theta))$. For which θ this pair of vectors form a basis in \mathbb{R}^{2} ? For which θ this basis is oriented in the same way as the standard basis? In the opposite way?

Problem 4.

Evaluate the integral $\int_{\mathbb{R}^{2}} f(x, y)$, where

$$
f(x, y)=e^{-\left(x^{2}+2(x-y)^{2}+y^{2}\right)}
$$

Problem 5.

Find the volume of the set $\left\{(x, y, z) \mid x^{2}+2 y^{2}+3 z^{2} \leq 1\right\} \subset \mathbb{R}^{3}$.
Problem 6.
Evaluate

$$
\int_{R}\left(\frac{x-y}{x+y+2}\right)^{2}
$$

where $R \subset \mathbb{R}^{2}$ is a square with the vertices $(1,0),(0,1),(-1,0)$, and $(0,-1)$.
Problem 7.
Evaluate $\int_{R}\left(x^{2}+y\right)$, where R is an annular region between the two circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.

Problem 8.
Evaluate

$$
\int_{R}(x+y)^{2} \sin ^{2}(x-y)
$$

where $R \subset \mathbb{R}^{2}$ is a square with the vertices $(1,0),(0,1),(1,2)$, and $(2,1)$.

Problem 9.

Evaluate $\int_{R} f(x, y, z)$, where $f(x, y, z)=x^{2}+y^{2}+z^{2}$ and R is an upper half sphere $\left\{x^{2}+y^{2}+\right.$ $\left.z^{2}<1, z>0\right\}$. Hint: use spherical coordinates, $x=r \sin \phi \cos \theta, y=r \sin \phi \sin \theta, z=r \cos \phi$.

Problem 10.
Suppose $q(x)$ is a continuous function on $[0,1]$. Prove that

$$
\int_{0}^{1}\left[q(x)\left(\int_{0}^{x} q(t) d t\right)\right] d x=\frac{1}{2}\left(\int_{0}^{1} q(x) d x\right)^{2}
$$

