Real Analysis Math 205C/H140C, Spring 2016

Homework 6, due May 19, 2016 in class

Problem 1.

Prove that a bilinear form $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is alternating if and only if $\phi(v, v)=0$ for all $v \in \mathbb{R}^{3}$.

Problem 2.

Is it true that $\omega \wedge \omega=0$ for any k-form (with $k \geq 1$)?

Problem 3.

Let ω be an exterior k-form, where k is an odd integer. Show that $\omega \wedge \omega=0$.
Problem 4.
Let ϕ, ψ, and θ be the following forms in \mathbb{R}^{3} :

$$
\begin{aligned}
& \phi=x d x-y d y \\
& \psi=z d x \wedge d y+x d y \wedge d z \\
& \theta=z d y
\end{aligned}
$$

Compute $\phi \wedge \psi, \theta \wedge \phi \wedge \psi, d \phi, d \psi, d \theta$.

Problem 5.

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a differentiable map given by

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right)
$$

and let $\omega=d y_{1} \wedge d y_{2} \wedge \ldots d y_{n}$. Show that

$$
f^{*} \omega=\operatorname{det}(D f) d x_{1} \wedge \ldots d x_{n}
$$

Problem 6.

Given a k-form ω in \mathbb{R}^{n}, define an $(n-k)$-form $\star \omega$ by setting $\star\left(d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}}\right)=$ $\operatorname{sgn}(\sigma)\left(d x_{j_{1}} \wedge \ldots \wedge d x_{j_{n-k}}\right)$, and extending it by linearity, where $i_{1}<i_{2}<\ldots i_{k}, j_{1}<$ $\ldots<j_{n-k}$, and σ is a permutation of the set $(1,2, \ldots, n)$ given by $\left(i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{n-k}\right)$. This is Hodge star operator.
If $\omega=a_{12} d x_{1} \wedge d x_{2}+a_{13} d x_{1} \wedge d x_{3}+a_{23} d x_{2} \wedge d x_{3}$ is a 2 -form in \mathbb{R}^{3}, find $\star \omega$.
Problem 7.
Prove that $\star \star \omega=(-1)^{k(n-k)} \omega$.

Problem 8.

Show that the form $\omega=2 x y^{3} d x+3 x^{2} y^{2} d y$ is closed and compute $\int_{c} \omega$, where c is the arc of the parabola $y=x^{2}$ from $(0,0)$ to (x, y).

Problem 9.

Let ω be a 1-form in an open connected set $U \subset \mathbb{R}^{n}$. Assume that for each closed differentiable curve c in U, the integral $\int_{c} \omega$ is a rational number. Prove that ω is closed. Does it have to be exact in U ?

Problem 10.
Let ω be a closed 1-form in $\mathbb{R}^{2} \backslash\{(0,0)\}$. Assume that ω is bounded (i.e. its coefficients are bounded) in a disc centered at $(0,0)$. Show that ω is exact in $\mathbb{R}^{2} \backslash\{(0,0)\}$.

