Real Analysis Math 205C/H140C, Spring 2016

Homework 7, due June 3, 2016 in class

Problem 1.

Formulate the divergence theorem (in terms of vector calculus) in the case of a bounded domain with a smooth boundary in \mathbb{R}^{n} (instead of \mathbb{R}^{3}).

Problem 2.

Use Green's Theorem to compute the area inside the Lemniscate of Gerono, which has equation $x^{4}=x^{2}-y^{2}$.

Problem 3.

Evaluate

$$
\int_{\gamma} y^{4} d x+2 x y^{3} d y
$$

where γ is an ellipse $x^{2}+2 y^{2}=2$.

Problem 4.

Determine the area enclosed by cycloid, i.e. the curve parameterized by

$$
\gamma(t)=(t-\sin t, 1-\cos t), \quad t \in[0,2 \pi]
$$

and the x-axis.

Problem 5.

Let E be the solid unit cube with opposing corners at the origin and $(1,1,1)$ and faces parallel to the coordinate planes. Let S be the boundary surface of E, oriented with the outward-pointing normal. If the vector field \bar{F} is given by

$$
\bar{F}=\left(2 x y, 3 y e^{z}, x \sin z\right)
$$

find $\int_{S}<\bar{F}, \bar{n}>d A$ using the divergence theorem.
Problem 6.
TRUE or FALSE: If $S \subset \mathbb{R}^{3}$ is a smooth closed surface (that is, a surface without a boundary curve), then for any smooth vector field \bar{F} in \mathbb{R}^{3} we have

$$
\int_{S}<\operatorname{curl} \bar{F}, \bar{n}>d A=0
$$

Problem 7.

Evaluate the integral

$$
\int_{\gamma} y^{3} d x+x z d y+x^{3} d z
$$

where γ is the intersection of the plane $y+z=1$ with the cylinder $x^{2}+y^{2}=1$, oriented counterclockwise when viewed from above.

Problem 8.

An electric charge at $\overline{0} \in \mathbb{R}^{3}$ generates the field $\bar{E}=\frac{\bar{x}}{\|\bar{x}\|^{3}}$. What is the flux of \bar{E} through the unit sphere? What is the flux of \bar{E} through any other sphere containing the origin $(0,0,0)$ inside?

Problem 9.

Let S be the upper hemisphere of the unit sphere $x^{2}+y^{2}+z^{2}=1$. Use Stokes' theorem to evaluate $\int_{S}<\bar{F}, \bar{n}>d A$, where the vector field \bar{F} is given by

$$
\bar{F}=\left(x^{3} e^{y},-3 x^{2} e^{y}, 0\right),
$$

and \bar{n} is the normal vector pointing upward.
Problem 10.
Let γ be the curve of the intersection of the surface $2 x^{2}+2 y^{2}+z^{2}=9$ with $z=\frac{1}{2} \sqrt{x^{2}+y^{2}}$, oriented counterclockwise when viewed from above. Evaluate

$$
\int_{\gamma} 2 y d x+2 y z d y+\left(x z^{3}+y \sin \left(z^{2}\right)\right) d z
$$

