Midterm Sample

Problem 1.

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}x^{2016}\left(1-\cos \left(\frac{y}{x}\right)\right), & \text { if } x \neq 0 ; \\ 0, & \text { if } x=0\end{cases}
$$

Determine all the points at which f is differentiable.

Problem 2.

Denote $U=\{(x, y) \mid x+y>0\} \subset \mathbb{R}^{2}$. Let the transformation $f: U \rightarrow \mathbb{R}^{2}$ be given by $f(x, y)=\left(x-y, x^{2}+y^{2}\right)$. Prove that f is locally one-to-one. Is it globally one-to-one?

Problem 3.

Suppose $q(x)$ is a continuous function on $[0,1]$. Set $Q_{1}(x)=\int_{0}^{x} q(t) d t$, and

$$
Q_{k+1}(x)=\int_{0}^{x} q(t) Q_{k}(t) d t
$$

for $k \geq 1$. Prove that $Q_{k}(1)=\frac{1}{k!}\left(Q_{1}(1)\right)^{k}$ for each $k \in \mathbb{N}$.

Problem 4.

Let $U=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0, y>0,1<x^{2}+y^{2}<4\right\}$. Find $\int_{U} f(x, y)$, where $f(x, y)=\frac{x y}{x^{2}+y^{2}}$.

Problem 5.

Consider the set $S=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}-2 x y z=1\right\} \subset \mathbb{R}^{3}$. Find all the points of the set S that do not have a neighborhood where the set can be represented as a graph of a smooth function.

