Complex Analysis, HW \# 6

Chapter 7, problems 30, 31, and these problems:

Problem 1.

For $\alpha \in \mathbb{R}$ let $L_{\alpha}=\left\{r e^{i \alpha} \mid r \geq 0\right\}$. Suppose that $0<\alpha<2 \pi$. Show that if α / π is rational then there exists a non-trivial function u harmonic in \mathbb{C} which vanishes on L_{0} and L_{α}.

Problem 2.

For $\alpha \in \mathbb{R}$ let $L_{\alpha}=\left\{r e^{i \alpha} \mid r \geq 0\right\}$. Suppose that $0<\alpha<2 \pi$. Show that if α / π is irrational then any harmonic in \mathbb{C} function that vanishes on L_{0} and L_{α} must vanish identically.

Problem 3.

Suppose f is entire, $f(x)$ is real for all $x \in \mathbb{R}$ and $f(i y)$ is purely imaginary for all $y \in \mathbb{R}$. Show that $f(-z)=-f(z)$.

Problem 4.

Let s be a real number, and let the function u be defined in $\mathbb{C} \backslash(-\infty, 0]$ by

$$
u\left(r e^{i \theta}\right)=r^{s} \cos s \theta \quad(r>0,-\pi<\theta<\pi) .
$$

Prove that u is a harmonic function.

Problem 5.

Let f be an entire function which is real valued on the unit circle. Prove that f is constant.

