Complex Analysis Math 220A

Midterm Sample Exam

Problem 1.

How many roots of the equation $z^{4}+z^{3}-4 z+1=0$ are in the ring $1<|z|<4$?
Problem 2.
Construct a conformal mapping that sends the open set

$$
U_{1}=\{z=x+i y \mid 0<y<x\}
$$

to the open set

$$
U_{2}=\left\{z=x+i y \mid x^{2}+y^{2}<1, y>0\right\} .
$$

Problem 3.

Let u be a harmonic function on \mathbb{R}^{2} that does not take zero value (i.e. $u(x) \neq 0 \forall x \in \mathbb{R}^{2}$). Show that u is constant.

Problem 4.

Describe the group of conformal automorphisms of the domain

$$
U=\left\{|z|<1, z \notin\left\{\frac{1}{2},-\frac{1}{2}\right\}\right\} .
$$

Problem 5.

Let f be a holomorphic function that maps the unit disc to the unit disc. Assume that for some $a \neq b,|a|<1,|b|<1$, we have $f(a)=f(b)=0$. Show that for any z from the unit disc we have

$$
|f(z)| \leq\left|\frac{z-a}{1-z \bar{a}}\right| \cdot\left|\frac{z-b}{1-z \bar{b}}\right|
$$

