Complex Analysis Math 220B

Final Exam (sample)

Problem 1.

Let f be a bounded holomorphic function in the upper half plane and continuous on its closure. Suppose also that $f(z)$ is real for real z. Prove that f must be constant.

Problem 2.

Prove that the product $\prod_{k=1}^{\infty}\left(\frac{z^{n}}{n!}+\exp \left(\frac{z}{2^{n}}\right)\right)$ converges uniformly on compact sets to an entire function.

Problem 3.

Let $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$ and $f: \mathbb{H} \rightarrow \mathbb{H}$ be analytic. Prove that

$$
\left|\frac{f(z)-f(i)}{f(z)-\overline{f(i)}}\right| \leq\left|\frac{z-i}{z+i}\right|, \quad z \in \mathbb{H} .
$$

Problem 4.

Prove that there is no one-to-one holomorphic map from the unit disk $\mathbb{D}=$ $\{|z|<1\}$ onto the punctured disk $\mathbb{D} \backslash\{0\}=\{0<|z|<1\}$. Prove also that there is a holomorphic mapping of the unit disk $\mathbb{D}=\{|z|<1\}$ onto the punctured disk $\mathbb{D} \backslash\{0\}=\{0<|z|<1\}$.

Problem 5.

Let \mathbb{D} be the unit disc, and suppose that $f: \mathbb{D} \rightarrow \mathbb{D} \backslash\{0\}$ is analytic and $f(0)=\frac{1}{2}$. Prove that $\left|f\left(\frac{1}{2}\right)\right| \geq \frac{1}{8}$.

