
COMPLEX ANALYSIS

Practice Qualifying Exam

Monday, June 1, 2015 — 1:00pm - 3:30pm
This Exam is for training purposes only. It will not influence you Math 220C final grade, and cannot substitute the actual Qualifying Exam in Complex Analysis in any way.
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Problem 1.

Prove that there is no function f such that f is analytic on the punctured
unit disc D\{0}, and f ′ has a simple pole at 0.



Problem 2.

Prove that the zeros of the polynomial p(z) = zn + cn−1z
n−1 + . . .+ c1z + c0

all lie in the open disk with center 0 and radius

R =
√
1 + |c0|2 + |c1|2 + . . .+ |cn−1|2.



Problem 3.

Find explicitly a conformal mapping of a domain D\(−1, 1/4] to the unit
disc D.



Problem 4.

Evaluate
∫∞

0
(log x)2

1+x2 dx.



Problem 5.

Let f be a bounded analytic function in the upper half-plane H. Suppose
that f(in) = e−n for all n ∈ N. Find f(1 + i). (You need to explain why the
value that you found is the only possible.)



Problem 6.

Let F be the family of all analytic functions

f(z) = z + a2z
2 + a3z

3 + . . .

on the open unit disc, such that |an| ≤ n for each n. Prove that F is a
normal family.



Problem 7.

Let f be an entire non-constant function that satisfies the functional equa-
tion f(1− z) = 1− f(z) for all z ∈ C. Show that f(C) = C.



Problem 8.

Determine the complex numbers z for which the power series
∞∑
n=1

zn

n2 log n

and its term by term derivatives of all orders converge absolutely.


