Problem 1.

Find the integral

$$\int_0^\infty \frac{\cos(2x)}{1+x^2} dx.$$

Problem 2.

Consider a series $f(z) = \sum_{n=0}^{\infty} \frac{z^n}{n+1}$.

a) What is the radius of convergence of this series?

b) Take the power series for f near the point $\frac{i}{2}$, i.e. $f(z) = \sum_{n=0}^{\infty} a_k (z - \frac{i}{2})^k$. What is the radius of convergence of this series?

Problem 3.

Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$ be an entire function. Find the integral

$$\int_{|z|=1} f\left(\sin\left(\frac{1}{z}\right)\right) dz$$

Problem 4.

Let $f_j : D(0,1) \to D(0,1)$ be holomorphic for each $j \in \mathbb{N}$. Suppose

$$\lim_{j \to \infty} f_j(0) = 1.$$

Show that $f_j(z) \to 1$ uniformly on compact subsets of D(0, 1).

Problem 5.

Determine the number of zeros of the polynomial

 $z^{100} + 50z^{50} + 100z^2 + 1$

in the annulus $\{1 < |z| < 2\}$.

Problem 6.

Let \mathcal{F} be the family of all analytic functions

$$f(z) = z + a_2 z^2 + a_3 z^3 + \dots$$

on the open unit disc, such that $|a_n| \leq n$ for each *n*. Prove that \mathcal{F} is a normal family.

Problem 7.

Let *U* be a bounded open connected set, $\{f_n\}$ a sequence of continuous functions on the closure of *U*, analytic in *U*. Assume that $\{f_n\}$ converges uniformly on ∂U . Prove that $\{f_n\}$ converges uniformly on *U*.