Complex Analysis, HW \# 1

Problem 1.

Find the integral

$$
\int_{0}^{\infty} \frac{\cos (2 x)}{1+x^{2}} d x
$$

Problem 2.

Consider a series $f(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{n+1}$.
a) What is the radius of convergence of this series?
b) Take the power series for f near the point $\frac{i}{2}$, i.e. $f(z)=\sum_{n=0}^{\infty} a_{k}\left(z-\frac{i}{2}\right)^{k}$. What is the radius of convergence of this series?

Problem 3.

Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ be an entire function. Find the integral

$$
\int_{|z|=1} f\left(\sin \left(\frac{1}{z}\right)\right) d z
$$

Problem 4.

Let $f_{j}: D(0,1) \rightarrow D(0,1)$ be holomorphic for each $j \in \mathbb{N}$. Suppose

$$
\lim _{j \rightarrow \infty} f_{j}(0)=1
$$

Show that $f_{j}(z) \rightarrow 1$ uniformly on compact subsets of $D(0,1)$.

Problem 5.

Determine the number of zeros of the polynomial

$$
z^{100}+50 z^{50}+100 z^{2}+1
$$

in the annulus $\{1<|z|<2\}$.

Problem 6.

Let \mathcal{F} be the family of all analytic functions

$$
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots
$$

on the open unit disc, such that $\left|a_{n}\right| \leq n$ for each n. Prove that \mathcal{F} is a normal family.

Problem 7.

Let U be a bounded open connected set, $\left\{f_{n}\right\}$ a sequence of continuous functions on the closure of U, analytic in U. Assume that $\left\{f_{n}\right\}$ converges uniformly on ∂U. Prove that $\left\{f_{n}\right\}$ converges uniformly on U.

