Complex Analysis, HW \# 2

Section 9, problems 4, 6, 11, and these problems:

Problem 1.

Give an example of an entire function f of order one with zeroes $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ such that one has $\sum_{n=1}^{\infty}\left|a_{n}\right|^{-1}=\infty$. Check that in your example $\sum_{n=1}^{\infty}\left|a_{n}\right|^{-1-\varepsilon}<\infty$ for any $\varepsilon>0$.

Problem 2.

Prove that the order $\lambda(f)$ of an entire function f is given by

$$
\lambda=\limsup _{r \rightarrow \infty} \frac{\log \left(\log \|f\|_{\infty, B_{r}}\right)}{\log r},
$$

where $\|f\|_{\infty, B_{r}}=\sup _{z \in B_{r}}|f(z)|$.

Problem 3.

Prove that for any increasing function $g:[0,+\infty) \rightarrow[0,+\infty)$ there exists an entire function f such that $|f(z)|>g(|z|)$ for all real values of z.

Problem 4.

Prove that the order $\lambda(f)$ of an entire function $f(z)=\sum_{k=1}^{\infty} a_{n} z^{n}$ is given by

$$
\lambda=\limsup _{n \rightarrow \infty} \frac{n \log n}{-\log \left|a_{n}\right|}
$$

