Complex Analysis, HW \# 3

Section 7, problem 65, and these problems:

Problem 1.

Suppose that f is a nonconstant entire function and f is odd. Show that $f(\mathbb{C})=\mathbb{C}$.

Problem 2.

Give an example of a nonconstant even entire function with $f(\mathbb{C}) \neq \mathbb{C}$.

Problem 3.

Here is a "counterexample" to the Little Picard Theorem:
The function e^{z} is entire and does not take value 0 , therefore the function $e^{e^{z}}$ is an entire function that does not take values 0 and 1!

What is the problem with this "counterexample"?

Problem 4.

Suppose that f is a nonconstant entire function which is not a polynomial. Prove that f assumes every value in \mathbb{C} infinitely many times with at most one exception.
(Hint: use the Big Picard Theorem.)

Problem 5.

Suppose f and g are entire functions and $e^{f}+e^{g} \equiv 1$. Prove that f and g are constant functions.

Problem 6.

Suppose f and g are entire functions. Prove that the function $e^{f}+e^{g}$ either has no zeros or infinitely many zeros.

