Section 7, problem 65, and these problems:

Problem 1.

Suppose that *f* is a nonconstant entire function and *f* is *odd*. Show that $f(\mathbb{C}) = \mathbb{C}$.

Problem 2.

Give an example of a nonconstant *even* entire function with $f(\mathbb{C}) \neq \mathbb{C}$.

Problem 3.

Here is a "counterexample" to the Little Picard Theorem:

The function e^z is entire and does not take value 0, therefore the function e^{e^z} is an entire function that does not take values 0 and 1!

What is the problem with this "counterexample"?

Problem 4.

Suppose that f is a nonconstant entire function which is not a polynomial. Prove that f assumes every value in \mathbb{C} infinitely many times with at most one exception. *(Hint: use the Big Picard Theorem.)*

Problem 5.

Suppose *f* and *g* are entire functions and $e^f + e^g \equiv 1$. Prove that *f* and *g* are constant functions.

Problem 6.

Suppose *f* and *g* are entire functions. Prove that the function $e^f + e^g$ either has no zeros or infinitely many zeros.