Complex Analysis, HW \# 5

Problem 1.

TRUE or FALSE: Suppose $v: \mathbb{C} \rightarrow \mathbb{R}$ is a continuous function such that for any point $z \in \mathbb{C}$ and any $n \in \mathbb{N}$ we have $\frac{1}{2 \pi} \int_{0}^{2 \pi} v\left(z+\frac{e^{i \theta}}{n}\right) d \theta=v(z)$. Then v is harmonic.

Problem 2.

Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be an entire function. Prove that for any $r \geq 0$ one has

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta=\sum_{n=0}^{\infty} r^{2 n}\left|a_{n}\right|^{2}
$$

Problem 3.

If f is an entire function satisfying the estimate

$$
|f(z)| \leq 1+|z|^{2015+\sqrt{2} \sin |z|}, \quad z \in \mathbb{C}
$$

show that f is a polynomial and determine the best upper bound for the degree of f.

Problem 4.

Find a conformal transformation which maps G onto the unit disk \mathbb{D}, where

$$
G=\left\{z \in \mathbb{C}:|z|>1 \text { and }\left|z-\frac{1+i}{2}\right|<\frac{1}{\sqrt{2}}\right\} .
$$

Problem 5.

a) Does there exist a function f holomorphic in $\mathbb{C} \backslash\{0\}$, such that $|f(z)| \geq \frac{1}{\sqrt{|z|}}$ for all $z \in \mathbb{C} \backslash\{0\}$?
b) Does there exist a function f holomorphic in $\mathbb{C} \backslash\{0\}$, such that $|f(z)| \leq \frac{1}{\sqrt{|z|}}$ for all $z \in \mathbb{C} \backslash\{0\}$?

Problem 6.

Let f be a meromorphic function in \mathbb{C} and such that $|f(z)|=1$ when $|z|=1$. Prove that f is a rational function.

Problem 7.

Find explicitly all the conformal automorphisms of the first quadrant.

