Complex Analysis Math 220C

Midterm Sample Exam

Problem 1.

Let S be a sequence of points in the complex plane that converges to 0 . Let $f(z)$ be defined and analytic on some disc centered at 0 except possibly at the points of S and at 0 . Show that either $f(z)$ extends to be meromorphic in some disc containing 0 , or else for any complex number w there is a sequence $\left\{\xi_{j}\right\}$ such that $\xi_{j} \rightarrow 0$ and $f\left(\xi_{j}\right) \rightarrow w$ as $j \rightarrow \infty$.

Problem 2.

Prove that if $f, g \in \operatorname{Aut}(\mathbb{D})$ commute (that is, $f \circ g=g \circ f$) then they must be of the same type (i.e. both hyperbolic, or both elliptic, or both parabolic).

Problem 3.

a) Prove that a zero-free entire function of finite order whose derivative is also zero-free must be of order one.
b) Give an explicit example of such entire function.
c) Describe all such functions explicitly.

Problem 4.

Let $U \subset \mathbb{R}^{2}=\mathbb{C}$ be open and convex. As with functions on the real line, one calls a function $\phi: U \rightarrow \mathbb{R}$ of two real variables convex if $\phi\left(\frac{z+w}{2}\right) \leq \frac{\phi(z)+\phi(w)}{2}$ for all $z, w \in U$. One can show (take it for granted) that measurable convex functions are automatically continuous. Given this, show that a convex function is subharmonic. Show by example that a subharmonic function need not be convex.

Problem 5.

Under what conditions on a sequence of real numbers $\left\{y_{n}\right\}_{n \in \mathbb{N}}$ does there exists a nontrivial bounded holomorphic function in the open right half-plane which has a zero at each point $1+i y_{n}$? In particular, can this happen if
a) $y_{n}=\log n$?
b) $y_{n}=\sqrt{n}$?
c) $y_{n}=n$?
d) $y_{n}=n^{2}$?

