Linear Algebra Math 3A

Final Exam
Monday, March 20, 2017 - 4:00 pm - 6:00 pm

Problem	1	2	3	4	5	Σ
Points						

Student's name:

Problem 1.

Find a basis in $\operatorname{Col}(A)$, where

$$
A=\left(\begin{array}{cccc}
1 & 2 & 0 & 4 \\
2 & 4 & -1 & 3 \\
3 & 6 & 2 & 22 \\
4 & 8 & 0 & 16
\end{array}\right) .
$$

Answer: One can take the first and the third columns of the matrix as a basis; notice that the choice of a basis is not unique.

Problem 2.

Find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$, where

$$
A=\left(\begin{array}{cc}
0 & 2 \\
-1 & 3
\end{array}\right)
$$

Answer: $P=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right), D=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$.

Problem 3.

For each of the following statements determine whether it is true or false. Explain your answers.
a) If A is 3×3 matrix that has three distinct real eigenvalues, then A^{2017} also has three distinct real eigenvalues.
b) For any 2×2 matrix A one has $\operatorname{rank} A=\operatorname{rank} A^{2}$.
c) If A and B are similar matrices, then A^{3} and B^{3} are also similar.

Answer: a) true; b) false; c) true. Notice that the answers had to be explained!

Problem 4.

Consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & t \\
1 & 4 & t^{2}
\end{array}\right)
$$

For what values of t is A invertible?

Answer: for every t that is not equal to 1 or 2 .

Problem 5.

Suppose $\left\{\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}\right\}$ is a linearly independent set of vectors from \mathbb{R}^{2017}. Does it imply that the set of vectors

$$
\left\{2 \bar{v}_{1}+3 \bar{v}_{2}+\bar{v}_{3}, \bar{v}_{1}-\bar{v}_{2}+2 \bar{v}_{3}, 2 \bar{v}_{1}+\bar{v}_{2}-\bar{v}_{3}\right\}
$$

is linearly independent?

Answer: yes.

